
Lab 4: Dungeon Crawler
CMPUT 229

Legend

#: Dungeon Wall
L: Loot
E: Enemy
@: Agent
Space: Path

Game Overview

Program Arguments

smalldungeon.txt:

This is one of the input files provided to you:

smalldungeon.txt:

The input file defines a unique dungeon configuration

The provided common.s script parses the input file provided as a program
argument into three designated arrays and some global variables:

Building the Dungeon

Arrays:

1. Paths Array
2. Loot Array
3. Enemies Array

Global Variables:

1. PLAYER_X
2. PLAYER_Y
3. MAX_X
4. MAX_Y
5. FINISH_X
6. FINISH_Y

Paths Array

A path can be imagined as this C struct

The paths array is an array of path “structs”. Each path struct contains four
32-bit integers that represent the start and end coordinates of a path: start x,
start y, end x, end y.

Paths Array
smalldungeon.txt:

Blue: Horizontal paths
Yellow: Vertical paths
Green: Finish point

Loot Array

Loot can be imagined as this C struct.

The loot array is an array of loot “structs”. Each loot struct contains two 32-bit
integers that represent the coordinates of a loot item.

Loot Array
smalldungeon.txt:

Enemies Array

An enemy can be imagined as this C struct.

The enemies array is an array of enemy “structs”. Each enemy struct contains
two 32-bit integers that represent the coordinates of an enemy.

Enemies Array
smalldungeon.txt:

Representing the Dungeon Map as a 2D Array

Your program must use the data in the paths, loot, and enemy arrays to
construct a 2D representation of the dungeon map.

Four pointers will be provided to your program’s primary function:

1. Pointer to the paths array
2. Pointer to the loot array
3. Pointer to the enemies array
4. Pointer to an empty array used to store the 2D representation of the

dungeon

Representing the Dungeon Map as a 2D Array

[0

0 1 1 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 …]

Each element of the 2D array is a 32-bit integer:

● 0 = Dungeon wall
● 1 = Path
● 2 = Loot
● 3 = Hidden enemy
● 4 = Shown enemy

[0

0 1 1 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 …]

Provided Global Variables

PLAYER_X: Current x coordinate of the agent

PLAYER_Y: Current y coordinate of the agent

MAX_X: Maximum x coordinate of the map

MAX_Y: Maximum y coordinate of the map

FINISH_X: x coordinate of the exit point of the dungeon

FINISH_Y: y coordinate of the exit point of the dungeon

Gameplay Details

Timer

The game starts with 5 seconds on the timer. The timer decreases by 1 each
second, implemented using timer interrupts.

If the timer reaches 0, the game will stop and you will lose.

Movement

The w,a,s,d keys are used to move the agent around the dungeon, implemented
using keyboard interrupts.

The agent is only able to move along paths.

Encountering Loot

When your agent moves to a
position that contains loot, 5
seconds are added to the timer and
the loot is removed from the map.

Health Points

Your agent starts the game with 3 health points. Encountering enemies causes
your agent to lose health points.

If your agent’s health points reach 0, the game stops and you lose.

Encountering an enemy

Enemies are hidden until the agent
encounters them.

When your agent moves to a
position that contains an enemy, it
will be unable to move until you
press the spacebar to attack.

Encountering an enemy

Your agent’s health points decrease
by 1 for each second that your agent
is next to an enemy.

Win Conditions

To win the game, the following conditions must be true:

1. Your agent must reach the dungeon exit
2. There must be time remaining on the timer
3. The agent must have at least 1 health point remaining
4. All loot must be collected

Exit represented by a
hole in the dungeon wall

Interrupts

Interrupts

The timer, player movement, and attack elements use external interrupts from
hardware.

● The rars timer tool is used to simulate RISC-V timing functionality, and is
necessary for timer interrupts in this lab.

● The rars keyboard and display MMIO simulator simulates printing to an
external display device, and is necessary for keyboard interrupts in this lab.

Required RARS Tools

Required RARS Tools

Enabling Interrupts using Control and Status Registers

Keyboard and timer interrupts are both user interrupts. The bits above need to be set to
enable keyboard and timer interrupts.

Interrupts

When an enabled interrupt is raised (such as the player pressing the “w” key), the
program is paused and execution is transferred to the interrupt handler.

You will write a custom interrupt handler to handle keyboard and timer interrupts.

To use your custom handler, the address of your handler must be stored in the
utvec CSR (CSR #5).

Global flags

Setting global variable flags within your handler can signal to your main game loop
what interrupt occurred. The main game loop can then update the game state
accordingly after your program exits the handler.

Example Gameflow

Ucause

● The ucause register contains the current exception/interrupt that is raised.
Note the 31st bit in the ucause register indicates if it was an exception or an
interrupt.

Memory-Mapped IO

Memory-Mapped IO

Memory-mapped IO allows interaction with external devices through an interface
pretending to be system memory. This mapping allows the processor to
communicate with these devices using the load-word and store-word instructions.

In this lab, keyboard, time, and display I/O registers are important.

Keyboard Interrupts and MMIO Registers

Register Name Memory Address Description

Keyboard control 0xFFFF0000 For keyboard interrupts to
be enabled, bit 1 of this
register must be set to 1;
after the keyboard interrupt
occurs, this bit is
automatically reset to 0.

Keyboard data 0xFFFF0004 The ASCII value of the last
key pressed is stored here.

Time Interrupts and MMIO Registers

Register Name Memory Address Description

Time 0xFFFF0018 This is a read-only register
that holds the time since the
program has started in
milliseconds.

Timecmp 0xFFFF0020 User-specified value. When
less than or equal to the
value in the Time register
an interrupt is generated.
Writing to this register is
required to set up a timer.

Printing to MMIO Display using MMIO Registers

Register Name Memory Address Description

Display control 0xFFFF0008 Bit 0 of this register
indicates whether the
processor can write to the
display. While this bit is 0
the processor cannot write
to the display. Thus, the
program must wait until this
bit is 1.

Display data 0xFFFF000C When a character is placed
into this register, given that
the display control ready bit
(bit 0) is 1, that character is
drawn onto the display.

Note that direct communication to the display via the Display Data register has
been implemented for you in the provided printChar and printStr functions.

Register Name Memory Address Description

Display control 0xFFFF0008 Bit 0 of this register
indicates whether the
processor can write to the
display. While this bit is 0
the processor cannot write
to the display. Thus, the
program must wait until this
bit is 1.

Display data 0xFFFF000C When a character is placed
into this register, given that
the display control ready bit
(bit 0) is 1, that character is
drawn onto the display.

Functions to implement in dungeon.s

dungeon:

This function is the entry point of the game and it executes the main
gameplay loop.

handler:

This handler will catch and handle keyboard and timer interrupts.

buildPaths

This function adds the in-memory representation of the path positions in a 2D
array of 32-bit integers.

[0

0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 …]

buildLootOrEnemies

This function adds the loot or hidden enemies (depending on the input arguments)
to the 2D representation of the dungeon array.

[0

0 1 1 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 …]

displayDungeon

This function handles the logic to print the map to the MMIO display.

2D dungeon array:

[0

0 1 1 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 …]

2D dungeon array:

[0

0 1 1 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 …]

getDestination

This function returns what type of element is located at a given x,y point in the 2D
representation of the map array.

Get x = 3, y = 1

replacePoint

This function replaces the value at a given x,y point in the 2D representation of the
map array with a new value.

2D dungeon array:

[0

0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 …]

Set x = 3, y = 1 to path

Functions provided to you in dungeon.s

printStr

Prints a string to the Keyboard and Display MMIO Simulator terminal at the x,y
coordinates provided as arguments.

printChar:

Prints a single character to the Keyboard and Display MMIO Simulator terminal at
the x,y coordinates provided as arguments.

intToStr:

Converts at most a two digit integer into its ascii equivalent.

Testing your solution

Test dungeons

Three test dungeon inputs are provided to you:

smalldungeon.txt

mediumdungeon.txt

largedungeon.txt

smalldungeon.txt

mediumdungeon.txt

largedungeon.txt

Hints

● Implementing the handler with timer and keyboard interrupts that work
correctly will likely take longer than you would expect. Debugging can be
tricky. It is highly recommended to start this lab early!

