
Path Finder
CMPUT 229

University of Alberta

Your task in the lab

• Implement A* search in RISC-V
• Create a search visualizer for A* search in RISC-V with the help of

GLIR (Graphics Library for RISC-V)

GLIR
● Graphics Library for RISC-V.

● GLIR is a library built at the University of Alberta.

● It has a collection of subroutines to emulate graphics.

● It prints graphical shapes onto the terminal.

● GLIR contains functions to print lines, rectangles, triangles, and circles.

3

GLIR: Terminal
● The terminal is where the graphics will be rendered.

● Grid of rectangular cells making up rows and columns.

● Each of these cells can have a character, a background
colour, and a foreground colour.

source: GLIR 4

https://cmput229.github.io/GLIR/

GLIR: Terminal (cont’d)
● Rows and columns describe the position of a cell.
● Similar to the Cartesian coordinate system.
● But the tuple for a cell on the cell is (Row, Col), not

(Col, Row).
◦ In other words, it uses the form (y, x) rather than the usual (x,

y) in the Cartesian coordinate system.

● This is because terminals were designed to print
text top to bottom, left to right.

● This is also why the origin (0, 0) is at the top left of
the terminal.

source: GLIR 5

https://cmput229.github.io/GLIR/

GLIR: Preparation and Cleanup
● common.s calls GLIR_Start and GLIR_End before and after the

visualizer process.

● These are two important procedures in GLIR.

● GLIR_Start (preparation):

◦ Resizes the screen to the user-specified size.

◦ Hides the terminal cursor.

◦ Clears the terminal to the default background color.

● GLIR_End (cleanup):

◦ Resizes the screen back to default (24x80).

◦ Shows the terminal cursor.

◦ Clears all the previous terminal output.
6

…

jal GLIR_Start

Run the visualizer
jal pathFinder

End the GLIR terminal
jal GLIR_End

…

common.s:

GLIR: Color
● GLIR supports 256-color terminals.

● It changes colors using ANSI escape codes.

● ANSI escape codes are a set of codes that can be used to change terminal options such
as cursor location, font styling, and colors.

● GLIR abstracts away these ANSI escape codes to allow the user to simply pass it the
desired color code from the Xterm 256 colors.

● The list of Xterm 256 colors can be found here: https://www.ditig.com/256-colors-
cheat-sheet

7

https://www.ditig.com/256-colors-cheat-sheet

GLIR: Color Table

8

Environment
● m × n eqaully sized cells

● From any cell:
◦ cannot move off the map
◦ cannot move into a water cell
◦ can only move into adjacent cells (cells immediately on the left, right, top, and

bottom)

• Number each cell with a unique non-negative integer
◦ The most upper left cell is numbered 0
◦ Increment by one each time we move one cell to the right.
◦ If we reach the end of the row, we wrap to the left most cell one row below, and

continue

Example

From cell 1:
• Can move into cells 0, and 6
• Cannot move up

◦ move off the map
• Cannot move into cell 2

◦ water cell
• Cannot move into cell 5

◦ diagonal from cell 1

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

Grass Water Start Goal

Legend:

Map:

Paths

• Defined between two cells
• Must obey environmental constraints

Valid Path

• Contiguous
• Consists of only grass cells

Invalid path

• Path is broken
• A* cannot jump over cells

Invalid path

• Path crosses a water cell
• A* cannot move into water cells

Invalid path

• Diagonal pathing
• A* cannot move diagonally from one

cell to another cell

Path Concepts - Representation

• Represent a valid path as an array of
cell numbers.

• The path on the left can be
represented as:
1, 6, 11, 16, 21, 22, 23, 24

Path starts at cell 1
goes through cells 6, 11, 16, 21, 22, 23
(in that order)
and terminates at cell 24

Path Concepts - Distance

• Distance between adjacent cells is one (1) unit
• Distance of a path is the distance between the first cell and the last

cell of the path
• For a path with n cells, traveling from the first cell to the last cell on

the path takes n - 1 moves.
• Therefore, the distance for a path with n cells is n - 1 units.

Path Concepts - Distance

1

2

3

4

5 6 7

• Path contains eight cells:
1, 6, 11, 16, 21, 22, 23, 24

• Distance is 7 units

A* - Introduction

• A pathfinding algorithm
• Uses heuristic functions to estimate the distance to the goal.
• By using heuristic function that never overestimate distances, A*...

◦ is guaranteed to find the shortest path, if it exists;
◦ saves time and memory by prioritizing search on seemingly shorter paths

A* - Terminologies

• For a particular valid path, P, from the start to an arbitrary cell, A, the parent of
A is another cell, B, that comes immediately before A on P
◦ The parent of the start cell is defined to be itself
◦ Accordingly, cell A is a child of cell B

• For a particular valid path, P, from the start to an arbitrary cell, A, the g of A is the
distance of P

• h: Estimated distance A to the goal
• f := g + h (f is defined to be g + h)

parent and g - An Example

Consider the path 1, 6, 11, 16, 21, 22, 23, 24

The parent of cell 24 is cell 23
• Cell 23 comes immediately before cell 24 on this path

The g of cell 24 for this path is 7 units
• The distance of this path is 7 units

A* - Terminologies

Uses two lists to store information:
1. Closed List

• Stores relevant information about each cell

2. Open List
• Keeps track of the cells that are not explored yet

A* - Terminologies

• Visit a cell ≡ Record the parent and g of the cell
• Expand a cell ≡ Visit its adjacent cells

A* - Algorithm

Search begins with the start cell
1. Visit and expand the start cell
2. Repeatledly expands visited cells until...

• A* expands the goal → a solution is found
• No more visited cells to expand → no solutions found

A* - Algorithm

Uses two techiques to find the shortest path
1. Expands the cell with the smallest f first
2. A* keeps the parent and g of a cell A only for the shortest path

from the start to A

A* Pseudocode

• The webpage contains the pseudocode for A*

Pathfinder

• There are many pathfinding algorithms
• Pathfinding visualizers graphically shows how different pathfinding

algorithms search the environment for the shortest path from the
start to the goal

• Examples:
◦ https://pathfindout.com/

https://pathfindout.com/

Pathfinder Implementation

We implement a visualizer for:
• One algorithm: A*
• An environment with only two types of cells: grass and water

Four main components:
1. Map buffer
2. Water array
3. Closed list
4. Open list

Map Buffer

• Holds the internal representation of the map
• 1D array where the i’th element is a...

◦ 1 if cell i is a water cell
◦ 0 otherwise

Water Array

• An array of integers
• Each element is the cell number of a water cell on a particular map
• A pointer to the water array will be passed as an argument to the
pathFinder function

Closed List

• An array of structs, one struct for each cell in the map
• Each struct contains three words in the following order

1. parent
2. g
3. h

• The corresponding struct of cell i will be the i’th struct in the array
• A parent of -1 indicates that the cell has not been visited yet
• Record parent, g, and h if cell was visited
• If A* finds a shorter path to a cell, update its parent, g, and h

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

Map:
Grass Water Start Goal

Legend:

Value 2 7 12

Index 0 1 2

Water Aarray:

Value 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Map Buffer:

Value -1 0 0 1 0 7 -1 0 0 -1 0 0 -1 0 0 -1 0 0 -1 0 0 ... -1 0 0

Index 0 1 2 3 4 5 6 ... 24

Closed List:
parent g h

In-Memory Representation

Open List

• Keeps track of the cells that are visited but not expanded yet.
◦ To expand a cell, A* first remove it from the open list

• Contains only the cell number of the cells
• Cells are added and removed from the open list very frequently
• Need an efficient implementation - min-heap

(Min-)heap

• A complete binary tree that satisfies the heap property
• Implemented as a 1D array

◦ Root has index 0
◦ Left child of node i has index 2 × i + 1
◦ Right child of node i has index 2 × i + 2

Value 0 1 2 3 4

Index 0 1 2 3 4

Array Representation

2

0

1 2

3 4

Tree Representation

0

1

3 4

Heap Property of Min-Heap

• The root node must have the smallest key
• For any given node, its key is less than or equal to the key of its

children (if any)
• We will use the f value of each cell as the key
• Must be checked when inserting, deleting, or changing the key of an

element
◦ If the heap property no longer hold, elements must be re-arranged s.t. the

heap property holds again

Heap Property - Example

Value 0 1 2 3 4

Index 0 1 2 3 4

Array Representation

Tree Representation

0

1 2

3 4

0

1

3 4

2

Satisfies the min-heap property

Heap Property - Example

Value 1 0 2 3 4

Index 0 1 2 3 4

1

0 2

3 4

0

1

3 4

2

Array Representation

Tree Representation Does not satisfy the min-heap property

The key of the root node is greater than
the key of its left child

Heap Operations

• This lab provides three heap operations in the heapq.s file
1. insert: inserts a cell into the heap and maintains the heap property based

on the f values of the cells
2. popMin: removes the cell with the smallest f from the heap and maintains

the heap property based on the f values of the cells
3. minHeap: transforms an array of cell numbers into a heap in place based on

the f values of the cells

• Specifications for the three functions are on the webpage

Heap - Notes

• Although having a high-level understanding of the heap data
structure and the heap operations is sufficient to complete the lab...

• It is strongly recommended that students take a look at the source
code in heapq.s

Initialization

• common.s declares the map buffer, closed list, and open list...
• ... and passes the pointers to each as arguments to the pathFinder

function
• Students must initialize the arrays with initial values

1. The map buffer is initialized as an arrays of zeros
2. Each element in the closed list is initialized as -1,0,0
3. To initialize the open list, simply set the size of the open list to zero

◦ The size of the open list is given a global variable in the heapq.s file

Heuristic Function

• Each cell is associated with a coordinate (R, C)
• We can use this coordinate to calculate the Manhattan distance

between two cells

Manhattan Distance

• The Manhattan distance between two cells with coordinates (R1, C1)
and (R2, C2) is:

|R1-R2|+|C1-C2|
• The absolute difference between the row numbers plus the absolute

difference between the column numbers

Manhattan Distance - Example

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

(R1,C1) = (0,1)

(R2,C2) = (4,4)

 |R1-R2|+|C1-C2|
= |0-4|+|1-4|
= |-4|+|-3|
= 4 + 3
= 7

Drawing the Map with GLIR

Align cell 0 with the cell located at (0, 0)

For example, the coordinate of cell 16 is (4, 1)

Drawing the Map - Colors

• Grass → 10
• Water → 14
• Start → 9
• Goal → 11
• Expanded cells → 8
• Solution path → 13
Color codes are given as global
variables in the common.s file

Drawing the Map - Updates
● There are multiple ways to display screen updates.
● The GLIR documentation points out two methods:

◦ Clear and Refresh
◦ Batch and Release.

● These two methods are helpful to know, but they are not appropriate for this lab.
◦ There will be a lot of screen updates, so the Clear and Refresh method will result in flickers because

clearing and printing onto the screen is a relatively slow process.
◦ For printing relatively simple shapes (one cell at a time) in this lab, using the Batch and Release method is

excessive and unnecessary.

46

https://cmput229.github.io/GLIR/

Drawing the Map - Updates

Instead, this lab uses the following method
1. Print the initial map to the terminal
2. Redraw cells in gray as A* expands them
3. If a solution path is found at the end, we redraw the cells on the

solutin path with purple
4. Redraw the start and goal cells
All of the steps can be achieved using the GLIR_PrintRect procedure

GLIR: GLIR_PrintRect
GLIR_PrintRect:

Prints a rectangle on the terminal.

Arguments:

a0: Row of the top left corner

a1: Col of the top left corner

a2: Signed height of the rectangle

a3: Signed width of the rectangle

a4: Colour to print with

a5: Address of the null-terminated string to print with; if 0 uses the unicode full block

 char (█) as default

Returns:

None

48

Pathfinder Visualizer General Flow

1. Build the map
2. Draw the map on the terminal
3. Run A* search from the start cell
4. If a solution path is found, draw the solution path in purple
5. Redraw the start and goal cells

Demonstration

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

Map:

Value 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Map Buffer:

Build the map

Initialization

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

-1 0 0 -1 0 0 -1 0 0 -1 0 0 -1 0 0

-1 0 0 -1 0 0 -1 0 0 -1 0 0 -1 0 0

-1 0 0 -1 0 0 -1 0 0 -1 0 0 -1 0 0

-1 0 0 -1 0 0 -1 0 0 -1 0 0 -1 0 0

-1 0 0 -1 0 0 -1 0 0 -1 0 0 -1 0 0

Closed ListMap

Open List - tree Open List - array

In this lab, A* must visit adjacent cells in the following order: left, right, top, and bottom

parent g h

Visit the Start Cell

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

-1 0 0 -1 0 0 -1 0 0 -1 0 0 -1 0 0

-1 0 0 -1 0 0 -1 0 0 -1 0 0 -1 0 0

-1 0 0 -1 0 0 -1 0 0 -1 0 0 -1 0 0

-1 0 0 -1 0 0 -1 0 0 -1 0 0 -1 0 0

-1 0 0 -1 0 0 -1 0 0 -1 0 0 -1 0 0

Closed ListMap

1

Open List - tree Open List - array

Value 1

Index 0

0 71

Expand cell 1

0 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

Map

1 -1 0 0 -1 0 0 -1 0 0 -1 0 0

-1 0 0 -1 0 0 -1 0 0 -1 0 0 -1 0 0

-1 0 0 -1 0 0 -1 0 0 -1 0 0 -1 0 0

-1 0 0 -1 0 0 -1 0 0 -1 0 0 -1 0 0

-1 0 0 -1 0 0 -1 0 0 -1 0 0 -1 0 0

Closed List

1

Open List - tree Open List - array

Value 1

Index 0

0 7

Step 1 - remove cell 1 from open list

1

Visit cell 0

0 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

Map

1 -1 0 0 1 0 7 -1 0 0 -1 0 0 -1 0 0

-1 0 0 -1 0 0 -1 0 0 -1 0 0 -1 0 0

-1 0 0 -1 0 0 -1 0 0 -1 0 0 -1 0 0

-1 0 0 -1 0 0 -1 0 0 -1 0 0 -1 0 0

-1 0 0 -1 0 0 -1 0 0 -1 0 0 -1 0 0

Closed List

0

Open List - tree Open List - array

Value 0

Index 0

Step 2 - visit left adjacent cell

0

Right adjacent cell is a
water cell

No top adjacent cell

1 81

Visit cell 6

0 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

Map

1 1 1 8 1 0 7 -1 0 0 -1 0 0 -1 0 0

-1 0 0 -1 0 0 -1 0 0 -1 0 0 -1 0 0

-1 0 0 -1 0 0 -1 0 0 -1 0 0 -1 0 0

-1 0 0 -1 0 0 -1 0 0 -1 0 0 -1 0 0

-1 0 0 -1 0 0 -1 0 0 -1 0 0 -1 0 0

Closed List

0

Open List - tree Open List - array

Value 0

Index 0

Step 3 - visit bottom adjacent cell

1 1 66

6

6

1

Calculate f
0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

Map

1 1 8 1 0 7 -1 0 0 -1 0 0 -1 0 0

-1 0 0 1 1 6 -1 0 0 -1 0 0 -1 0 0

-1 0 0 -1 0 0 -1 0 0 -1 0 0 -1 0 0

-1 0 0 -1 0 0 -1 0 0 -1 0 0 -1 0 0

-1 0 0 -1 0 0 -1 0 0 -1 0 0 -1 0 0

Closed List

0

Open List - tree Open List - array

Value 0

Index 0

6

6

1

Heap property not satisfied

f =

f =

g + h

g + h

1 + 89

1 + 67

Heapify

Open List - tree Open List - array

Value

Index 0 1

0 f = 9

6 f = 7

Re-arrange elements in the open list such that it satisfies the heap property again

0 6

Remove cell 6 from open list

Expand cell 6

0 1 2 3 4

5 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

Map

1 1 8 1 0 7 -1 0 0 -1 0 0 -1 0 0

-1 0 0 -1 0 0 -1 0 0 -1 0 0

-1 0 0 -1 0 0 -1 0 0 -1 0 0 -1 0 0

-1 0 0 -1 0 0 -1 0 0 -1 0 0 -1 0 0

-1 0 0 -1 0 0 -1 0 0 -1 0 0 -1 0 0

Closed List

Open List - tree Open List - array

Value

Index

0 f =

6 f = 7

9

6 1 1 6

0

1

6

0

0

Remove cell 6 from open listVisit left adjacent cell

Visit cell 5

0 1 2 3 4

6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

Map

1 1 8 1 0 7 -1 0 0 -1 0 0 -1 0 0

-1 0 0 1 1 6 -1 0 0 -1 0 0 -1 0 0

-1 0 0 -1 0 0 -1 0 0 -1 0 0 -1 0 0

-1 0 0 -1 0 0 -1 0 0 -1 0 0 -1 0 0

-1 0 0 -1 0 0 -1 0 0 -1 0 0 -1 0 0

Closed List

Open List - tree Open List - array

Value

Index
0 f = 9

5 6 2 7

5

1

6

0

0

5 f = 9
Heap property satisfied

Visit top adjacent cell

Visit cell 1

0 1 2 3 4

6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

Map

1 1 8 1 0 7 -1 0 0 -1 0 0 -1 0 0

6 2 7 1 1 6 -1 0 0 -1 0 0 -1 0 0

-1 0 0 -1 0 0 -1 0 0 -1 0 0 -1 0 0

-1 0 0 -1 0 0 -1 0 0 -1 0 0 -1 0 0

-1 0 0 -1 0 0 -1 0 0 -1 0 0 -1 0 0

Closed List

Open List - tree Open List - array

Value

Index
0 f = 9

5

6 2 7

5

1

6

0

0

5 f = 9
New g (2) greater than old g (0), skip

Right adjacent cell is a water cell, skip

Heap property satisfied

New g (2) greater than old g (0), skipVisit bottom adjacent cell

Visit cell 11

0 1 2 3 4

6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

Map

1 1 8 1 0 7 -1 0 0 -1 0 0 -1 0 0

6 2 7 1 1 6 -1 0 0 -1 0 0 -1 0 0

-1 0 0 -1 0 0 -1 0 0 -1 0 0 -1 0 0

-1 0 0 -1 0 0 -1 0 0 -1 0 0 -1 0 0

-1 0 0 -1 0 0 -1 0 0 -1 0 0 -1 0 0

Closed List

Open List - tree Open List - array

Value

Index
0 f = 9

5

6 2 5

0

0

5 f = 9 11 f = 7

5

1

11

2

Heapify the open listVisit bottom adjacent cell

Visit cell 11

0 1 2 3 4

6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

Map

1 1 8 1 0 7 -1 0 0 -1 0 0 -1 0 0

6 2 7 1 1 6 -1 0 0 -1 0 0 -1 0 0

-1 0 0 6 2 5 -1 0 0 -1 0 0 -1 0 0

-1 0 0 -1 0 0 -1 0 0 -1 0 0 -1 0 0

-1 0 0 -1 0 0 -1 0 0 -1 0 0 -1 0 0

Closed List

Open List - tree Open List - array

Value

Index
0 f = 9

5

0

5 f = 9 11 f = 7

5

1 2

0 11

Exercise

• Try tracing the A* pseudocodes with the previous example

