Branch Counting

CMPUT 229
University of Alberta

Consider the program below

Forward Branch

RISC-V Assembly

1 foo:

2 bge t0 t1 target

3 addi to to 1

4 j foo

5 target:

6 addi t1 t11 Backward Branch
7 1li to o

3 1i t2 10

9 blt t1 t2 [foo

Now consider how branch targets are stored in

assembly

Address

0x00400000
0x00400004
0x00400008
0x0040000c
0x00400010
0x00400014

0x00400018

RARS

Code

0x0062d663
0x00128293
oxffoffeef
0x00130313
0x00000293
0x00200393

Oxfe7344e3

Positive Offset
0x00400000+0x0000000c
=0x0040000c

Basic
bge x5 X6 ©0x0000000c

addi x5 x5 1

jal x0 oxfffffff8 Negative Offset

0x00400018+0xffffffe8
=0x00400000

addi x6 x6 1
addi x5 x0 ©
addi x7 x0 10

blt x6 x7 oxffffffe8

Task

|dentify branches by their opcode, and use the offset to determine if
the branch goes forwards or backwards.

RISC-V Branch Instructions
‘beq Branch EQal

bge Branch Greater than or Equal

bgeu Branch Greater than or Equal Unsigned
blt Branch Less Than

bltu Branch Less Than Unsigned

bne Branch Not Equal

SB Type Format

All branch instructions are encoded in the SB Instruction Type Format

imm[12|10:5] rs2 rsi funct3 imm[4:1[11] opcode

| |

The relative offset is encoded in bits 7-11 & 25-31 of the instruction

Assignment

Students must implement the branchCounting function

Instructions Array

* The instructions array of a program is an array of RISC-V instructions
in binary representation

* The instructions in the array are the instructions in the input program
* The array is terminated by the sentinel value OxFFFFFFFF

branchCounting

This function is the entry point of student's solution to this lab. It counts forward
and backward branches in the program pointed to by a®@. Returns the number of forward
branches in a@ and the number of backward branches in al.

Arguments:
a0: Pointer to the instructions array of the input program.

Returns:
a0: Integer number of forward branches in input.
al: Integer number of backward branches in input.

Input Guarantees

* The instructions array is terminated by the sentinel value OxFFFFFFFF.
* All instructions in the input file are valid RISC-V instructions.
* No branches will have an offset of zero.

* There are at most 100 instructions in the input file.

Testing Workflow

You can generate input files from any RISCV .s file satisfying input
guarantees. To generate the binary file, test.bin, for the test program,
test.s, you can run the following command:

rars a dump .text Binary test.bin test.s

Run your solution on the input file with

rars branchCounting.s pa test.bin nc > lab.out

