
Lab #2: Caesar Cipher

CMPUT 229

American Standard Code for Information Interchange (ASCII)

Strings in Assembly
Strings are arrays of characters stored in 1 byte in memory.
The end of a string is indicated by a null terminator character
which has a value of 0.

The string “RISC V” is represented in assembly by a pointer
to the first character.

ValuesRegisters

0x100t0

t0 points to the string “RISC V”

0x1040x100Address

\0VCSIRValue

But remember, characters are stored as ASCII integer values.

Strings in Assembly
But remember, characters are actually represented by ASCII
integer values

So in memory, RISC V would actually look like this:

ValuesRegisters

0x100t0

t0 points to the string “RISC V”

0x1040x100Address

0x000x560x200x430x530x490x52Value

Instructions to Manipulate Characters (Bytes)

lb rd, offset(rs1)
Sign-extend to 32 bits in rd

0x1040x100Address

\0VCSIRValue

1 byte wide 1 byte wide …

lbu rd, offset(rs1)
Zero-extend to 32 bits in rd

sb rs2, offset(rs1)
Store just the rightmost byte of rs2

Caesar Cipher
A Caesar Cipher is a type of substitution cipher. Every character is shifted by
some key.

For this lab, we will have an uppercase key and a lowercase key that should be
used to encrypt a letter depending on its case.

You should leave all spaces in their original position. There will not be any
punctuation in the strings.

Caesar Cipher Visualized

(check lab page if you can’t watch video^^^)

Allocating Memory

To complete this lab, you must allocate memory for the new encrypted string. You
cannot simply overwrite the original string provided to your function.

Static Allocation: Reserving an area of memory where the size is known at
compile time. In other words, you know the amount of memory you need
without executing the program.

Static Allocation in RARS:

.data
buffer: .space 64
counter: .word 1

.include “common.s”

.text
your instructions go here
…

Sample Code

To access your static
memory use load address:

la t0, static_space
la t1, counter

Allocating Memory

In this lab, since the size of the input string is not known, static allocation is
infeasible. Instead, a solution should use dynamic allocation.

Dynamic Allocation: Reserving an area of memory where the size does not have
to be known. Depending on the execution of the program, you could have
different memory sizes.

Dynamic Allocation in RARS:

li a7, 9 # a7 <- 9
addi a0, x0, 64 # a0 <- 64
ecall
now a0 stores a pointer to 64 bytes of contiguous memory

… instructions that use memory

Sample Code

To dynamically allocate memory, set a7 to 9 and a0 to the number of bytes in
memory. The ecall instruction allocates the requested space in memory. It will
return a0 as a pointer to the allocated memory

Modulo in RISC-V

rem rd, rs1, rs2
• Stores the remainder of rs1/rs2 into rd

ValuesRegisters

t0

9t1

4t2

rem t0, t1, t2
• t0 = t1 % t2

1t0 = 9 % 4
t0 = 1

Testing your Lab
We have provided some test inputs and outputs for you to confirm that your
lab is working.

In the Program Arguments bar in the Execute tab, enter the complete path to
the test file. If your path has any spaces in it, the filename will not be read
correctly by RARS.

For example, UofAstudent/cmput 229/lab 2/test3.txt is an invalid path.

caesarEncrypt

a0: pointer to a string to encrypt

a0: pointer to a newly allocated memory that contains the encrypted string.

Parameter:

Return Value:

a1: uppercase key
a2: lowercase key

What to Submit?

A single file, called caesarencrypt.s.

Make sure the file does not contain a main procedure.

