
Introduction to Lab #2

José Nelson Amaral

General Intro to 229 Labs

• In 229, a “lab” is a programming assignment:
• A lab requires many more hours of work than the time allocated for lab sessions.
• Lab sessions are “consulting hours” when TAs are available to answer questions and to

help.
• Reading/work prior to the lab date/time is essential.
• The lab assignments will be progressively more difficult, and will require more time as

the term advances.

• A CMPUT 229 lab is not a “lab” in the sense of a chemistry lab.

Write a RISC-V assembly program that acts as a calculator for reverse Polish
notation/postfix expressions.

Infix notation:

(1 + 2) * 3 = 9

Postfix notation:

1 2 + 3 * = 9

The calculator Program

Token Type Value

OPERAND non-negative integer

PLUS -1

MINUS -2

TERMINATION -3

Types of input tokens for calculator

• read a token from the input list
• if token == OPERAND (a non-negative value)
• push value into the stack

• if token == PLUS or token == MINUS
• pop two topmost values from the stack
• perform operation
• push result into the stack

• if token == TERMINATION
• print out the value that is on top of the stack
• terminate the program

Operation of the calculator

1

0x10001024
0x10001020
0x1000101C
0x10001018

How does the stack grow?

5

Stack:
TopOfTheStack

1

4

3

4

Initial State: Stack only contains value 5
Action: Push 1 on top of stack
Action: Push 4 on top of stack
Action: Pop 4 from top of stack
Action: Pop 1 from top of stack
Action: Push 3 on top of stack

0x1000100C
0x10001008
0x10001004
0x10001000

Input Token List:

5

1

-2
-3 0x10001024

0x10001020
0x1000101C
0x10001018

5

1

Stack:

Token Type: MINUSTERMINATIONOPERAND

1
54

4

Pop 1 and 5 from stack, execute the operation 5-1
and push result into the stack

Pop 4 from stack and write it to output

Formatting and Style
• Check the provided example.s file
• Check the lab grading marksheet

comments begin with a sharp sign (#) and run to the end of the line.

.data
item:

.word 1

.text

.globl main
main:

lw s3, item
Loop:

add t1, s3, s3 # t1 <- 2 * i
add t1, t1, t1 # t1 <- 4 * i
add t1, t1, s6 # t1 <- Addr(save[i])
lw t0, 0(t1) # t0 <- MEM[save[i]]
bne t0, s5, Exit # if save[I] != k goto Exit
add s3, s3, s4 # i <- i + j
jal zero, Loop # goto Loop

Exit:

identifiers are alphanumeric sequences, underbars (_), and dots (.) that do not
begin with a number.

labels are identifiers placed at the beginning of a line, and followed by a colon.

Assembler Syntax

Assembler Directives
.data identifies the beginning of the data segment (in this example this segment contains a single word).

.word 1 stores the decimal number 1 in 32-bits (4 bytes)

.text identifies the beginning of the text segment (where the instructions of the program are stored).

.globl main declares the label main global (so that it can be accessed from other files).

.data
item:

.word 1

.text

.globl main
main:

lw s3, item
Loop:

add t1, s3, s3 # t1 <- 2 * i
add t1, t1, t1 # t1 <- 4 * i
add t1, t1, s6 # t1 <- Addr(save[i])
lw t0, 0(t1) # t0 <- MEM[save[i]]
bne t0, s5, Exit # if save[I] != k goto Exit
add s3, s3, s4 # i <- i + j
jal zero, Loop # goto Loop

Exit:

Pseudo Instructions
What's going on here ?

.data
val:

.word 12, 34, 56, 78, 90
outputMsg:

.asciz "\n Result = "
newln:

.asciz "\n\n"

.text
main:

li a1, 5
la t0, val
xor t1, t1, t1
xor t2, t2, t2

loop:
sub t3, a1, t2
blez t3, exit
lw t4, 0(t0)
add t1, t1, t4
add t2, t2, 1
addu t0, t0, 4
jal zero, loop

exit:
div t5, $t1, $a1
li a7, 4
la a0, outputMsg
ecall

li a7, 1
add a0, 0, t5
ecall

li a7, 4
la a0, newln
ecall

li a7, 10
ecall

OS-style call to obtain
services from RARS:
a0-a2: arguments
a7: system call code
a7: return value

pseudo instruction that
loads the immediate value
in the register

pseudo instruction that
loads the address of
specified label into register

Using GitHub

• While you can either type directly or copy and paste into an editor
provided by github, this is not recommended.
• Learn to use basic command-line commands for git such as:

• clone
• pull
• commit
• push

• When you initially clone the repository provided, you will see a Code
folder.
• In this folder there will be a calculator.s file.

• Your solution goes at the bottom of this file.
• Your code must start under the label ‘calculator’.

CMPUT 229 Student Submission License

• Carefully read the text of the CMPUT 229 Student Submission
License to understand what you are allowed to do with your code
before and after submission.
• After reading the license, complete the following information, in the
calculator.s file, to acknowledge that you have read and
understood the license:

common.s
• Every lab will have a common.s file that performs some actions

and then calls the function written by the student.
• Read carefully and try to understand the common.s file as a way to

learn.

