
Welcome to the Lab

CMPUT 229

University of Alberta

Fall 2021

CMPUT 229 (University of Alberta) Welcome to the Lab Fall 2021 1 / 13



Outline

1 About the Lab

2 Reverse-Polish-Notation

3 Stacks

4 Lab Implementation

5 Assignment Tips

6 CheckMyLab

7 Questions?

CMPUT 229 (University of Alberta) Welcome to the Lab Fall 2021 2 / 13



About the Lab

Lab Requirements

Assembly control flow

Loading and storing from memory

Using syscalls

CMPUT 229 (University of Alberta) Welcome to the Lab Fall 2021 3 / 13



Reverse-Polish-Notation

Reverse-Polish-Notation (RPN)

Also known as postfix notation

In this method of writing mathematical expressions, the operator
follows the operands

Differs from the more common infix notation, where the operator is
between the operands

Examples:

postfix infix result

1 2 + 1 + 2 3

5 4 - 1 - 5 - 4 - 1 0

CMPUT 229 (University of Alberta) Welcome to the Lab Fall 2021 4 / 13



Stacks

Stacks

Stacks are a way of storing data in memory

Is a First-In-First-Out (FIFO) data structure

Stack terminology:

Elements are ”pushed” onto the stack, and ”popped” from the stack
The last element to be pushed onto the stack (that is still in the stack)
is referred to as the ”top” element

The only element that can be popped at any given time is the top
element

CMPUT 229 (University of Alberta) Welcome to the Lab Fall 2021 5 / 13



Lab Implementation

RPN Expressions in This Lab

Your assignment will require parsing an RPN expression that
evaluates to a value

These RPN expressions will be passed as input to your function in the
form of an array of tokens.

This array is composed of four different types of tokens

OPERAND
PLUS
MINUS
TERMINATION

OPERAND tokens represent operands, PLUS and MINUS tokens
represent operators, and the TERMINATION token signifies the end
of the expression

CMPUT 229 (University of Alberta) Welcome to the Lab Fall 2021 6 / 13



Lab Implementation

Assignment

Write a function called calculator that computes and prints the result
of a Reverse-Polish-Notation expression

Input:

a0 : The address of memory containing an array of tokens making up
an RPN expression
a1 : The address of memory at which to begin growing your stack

Effect:

Prints the result of the expression stored in a0 to standard output

CMPUT 229 (University of Alberta) Welcome to the Lab Fall 2021 7 / 13



Lab Implementation

Recommended Strategy

Iterate over every token in the array passed to your function

For each token:
If it is an OPERAND:

Push the operand to your stack

If it is a PLUS:

Pop two operands from the stack, add the values together, then push
the resulting value to the stack

If it is a MINUS:

Pop two operands from the stack. If A is the first value you popped
and B is the second, compute B - A and store the resulting value back
to the stack

If it is a TERMINATION:

Pop a value from the stack, print it, then return from your function

CMPUT 229 (University of Alberta) Welcome to the Lab Fall 2021 8 / 13



Lab Implementation

System Calls

A list of system calls (syscalls) supported by RARS can be found in
the RARS help page

The syscall you will be using in this lab is PrintInt, which prints the
integer stored in the a0 register to standard output

The PrintInt syscall is executed after setting the value of a7 to 1 and
using the ecall instruction

Note: in this lab, do not print any newlines in order to ensure that
the grading scripts understand your solution

CMPUT 229 (University of Alberta) Welcome to the Lab Fall 2021 9 / 13



Lab Implementation

Stack Growth Direction

The grading scripts for this lab require that your stack grows
backwards in memory

Therefore, if the base address of your stack was at 0x10010004, you
would push the first item at 0x10010004, push the second at
0x10010000, and so on
While it may seem more intuitive to grow in the other direction, this
design more closely replicates the stacks you will be encountering in
this course
Marks will be deducted if your stack grows in the wrong direction

CMPUT 229 (University of Alberta) Welcome to the Lab Fall 2021 10 / 13



Assignment Tips

Assignment Tips

Read specifications very carefully. Pay special attention to what you
have to include - we don’t want a main: label.

Test your assignments on the lab machines before you submit. That’s
where we’ll be marking them.

Look at the marksheet to get an idea of how the grading will be done.

Style marks are easy marks. Format your code like the example.s file
we provided, and write good comments.

Be sure to submit code that runs and compiles. Otherwise you will
lose many marks.

Every function in RISC-V needs a return statement. At the end of
your function’s execution, return with the instruction jr ra

CMPUT 229 (University of Alberta) Welcome to the Lab Fall 2021 11 / 13



CheckMyLab

Using CheckMyLab

CheckMyLab is a great resource for testing your solution before
submission

In order to use it:

1 Create a copy of your solution file
2 In this new file, delete the .include ”common.s” line
3 Copy the entire code from the common.s file, and paste it near the top

of your copied file, where the .include ”common.s” line used to be
4 Submit this modified copy of your solution to CheckMyLab

This will show you which test cases your solution passed or failed, and
how they failed

Note: do not submit this modified copy for marks, as it will not work
with the grading scripts

CMPUT 229 (University of Alberta) Welcome to the Lab Fall 2021 12 / 13



Questions?

Questions?

CMPUT 229 (University of Alberta) Welcome to the Lab Fall 2021 13 / 13


	About the Lab
	Reverse-Polish-Notation
	Stacks
	Lab Implementation
	Assignment Tips
	CheckMyLab
	Questions?

