
Lab #3: BCD Multiplcation

CMPUT 229



Background

CMPUT 229



What is Binary Coded Decimal (BCD)?

Alternative encoding system:
Instead of representing numbers in binary, represent each decimal digit separately.

BCD encoded digits are identical to the binary encoding but are truncated to 4 bits.

Each decimal digit is represented in 4 bits.

0 0000 5 0101

1 0001 6 0110

2 0010 7 0111

3 0011 8 1000

4 0100 9 1001



Why do we care about BCD?

Arbitrarily large numbers: 
A processor can only perform arithmetic on certain builtin types.

32-bit RISC-V only supports 32-bit integers and 32-bit floats .

Control over precision and rounding: 
Floating point rounding can cause many issues.

Financial and business applications require strict rounding. 

We can represent arbitrarily large numbers precisely with BCD. 



Variable Length BCD Format

Why is this format needed?
A single BCD digit can only store the numbers from 0 to 9.

If we want to store larger numbers we can use multiple digits.

The digits must be stored in some standardized format.

Description of the format:
Numbers are encoded as arrays of bytes, with two BCD digits per byte.

The digit with the lower place value is stored in the lower nibble of the byte, while 
the digit with the higher place value is stored in the higher nibble.
The lowest byte contains the lowest two digits, and so on.

The number is terminated with the value 0xc, stored one nibble higher than the 
last digit.
Numbers contain no leading 0’s, except of the number 0, which is encoded as 
0xc0.



BCD Format Examples

0x85

0x45

0x33

0x0c

0x34

0x67

0xc4

0xc7

46734 334585 7

Low:

High:

Low:

High:

Low:

High:



Addition algorithm

Informal description: 
Assume input numbers A and B

Sum each digit pair, starting from the lowest pair.

If a number becomes larger than 10, split the number by place value and set 
the current result to the digit with the lower place value. Then propogate the 
digit with the higher place value so it is included in the next addition.



Multiplication algorithm

Informal description: 
Assume input numbers A and B.

For each digit of B, multiply that digit by each digit of A.

Add the shifted partial products.

Shift the partial product by the place value of the digit of B. As in, the first 
product should not be shifted, the should be by 1 to the left and so on.

Hints:
You may find the RISC-V multiplication, division, and remainder instructions 
useful.



Multiplication Example



Helper Functions

CMPUT 229



Helper Functions

Included Functions
We have included some functions to operate on binary BCD numbers.

These functions can get and set a particular digit of a binary BCD number, as 
well as compute the length of a binary BCD number.



getNth

a0: nth digit

Parameters:

Return Value:

Get the nth digit of a binary BCD number. The lowest digit has 
index 0.

Description:

a0: Pointer to a binary BCD number.
a1: Index of the digit to get.



getNth Example
Suppose getNth is called with the following inputs:

a0 0x10001000

a1 1

After the call, the result in a0 will be 4, since 4 is the 2nd digit.

0x45 0x23 0xc1

Number is 12345



setNth

N/A

Parameters:

Return Value:

Set the nth digit of a binary BCD number. The lowest digit has 
index 0.

Description:

a0: Pointer to a binary BCD number.
a1: Index of the digit to set.
a2: Digit to set the given index to



setNth Example
Suppose setNth is called with the following inputs:

a0 0x10001000

a1 4

a2 9

After the call, the BCD number at address 0x10001000 will be modified:

0x45 0x23 0xc1

Number is 12345

0x45 0x23 0xc9

Number is 92345



length

a0: Length of the input number

Parameters:

Return Value:

Get the length of a binary BCD number, including the 
terminating character.

Description:

a0: Pointer to a binary BCD number.



length Example
Suppose length is called with the following inputs:

a0 0x10001000

After the call, a0 will have the value 6. This is becuase the input number has 5 
digits, and the terminator is counted.

0x45 0x23 0xc1

Number is 12345



Assignment

CMPUT 229



Overview of the lab

Overview:
In this lab, you must implement addition and multiplication of BCD numbers, 
using the given format.
Additionally, you must write small functions to read from a string to the BCD 
format, and to print a BCD number.



mulBCD

a0: Pointer to an ASCII encoded integer (A).

N/A

Parameters:

Return Value:

This function takes two BCD numbers A and B, and prints their 
product. Internally, the multiplication must be performed on 
binary BCD numbers.

Description:

a1: Pointer to an ASCII encoded integer (B).



mulBCD Example
Suppose mulBCD is called with the following inputs, with ‘1’ representing the 
ASCII character of “1”:

a0 0x10001000

a1 0x10001010

‘4’ ‘6’ ‘7’ ‘3’ ‘4’ 0x00

‘3’ ‘9’ ‘1’ 0x00

mulBCD should print the product of 46734 and 391, which is 18272994.



addBCD

a0: Pointer to the first operand in binary BCD format.

N/A

Parameters:

Return Value:

This function adds two BCD numbers and writes the result to a 
buffer. The sum is stored as a binary BCD number.

Description:

a1: Pointer to the second operand in binary BCD format.
a2: Pointer to the result buffer



readBCD

N/A

Parameters:

Return Value:

This function converts an input string into a BCD formatted 
number.

Description:

a0: Pointer to an ASCII encoded integer.
a1: Pointer to the result buffer.



readBCD Example
Suppose readBCD is called with the following inputs:

a0 0x10001000

a1 0x10001010

‘4’ ‘6’ ‘7’ ‘3’ ‘4’ 0x00

After the call to readBCD, the memory location 0x10001010 should contain 
the following:

0x10001010 0x34 0x67 0xc4



printBCD

a0: Pointer to an integer in binary BCD format.

N/A

Parameter:

Return Value:

This function prints a BCD number to standard output. A 
newline should be printed after the number.

Description:



What to submit?

Submit a single file multiplyBCD.s.

Make sure to push your changes before the assignment 
deadline.



Testing

CMPUT 229



Testing your Solution
Included tests:

We have provided some test inputs and outputs.

Tests are stored in the “Tests” directory. *.txt files correspond to the inputs, while 
*.out files are the expected outputs.

Give file path as program arguments:

Make sure the test file has the correct format (Next slide).

RARS may need the full path to the test file.

Give the path to the *.txt file in the program arguments.



Format of the Test File
A test file contains an input to mulBCD:

The file must have two lines, each with a number.

The numbers in a test file must be valid inputs as given by the specification.


	Lab #3: BCD Multiplcation
	Background
	What is Binary Coded Decimal (BCD)?
	Why do we care about BCD?
	Variable Length BCD Format
	BCD Format Examples
	Addition algorithm
	Multiplication algorithm
	Multiplication Example
	Helper Functions
	Helper Functions (2)
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Assignment
	Overview of the lab
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Testing
	Slide 28
	Slide 29

