CMPUT 229 Lab 3

Cache Simulator

Author: Max Leontiev

Introduction

e Lab solution simulates a two-way set associative cache
o Simulates updates to LRU bits, valid bits, tags
o Tracks number of hits and misses, logging them as they occur
e Input: list of memory accesses (loads/stores with addresses)
O Represents accesses that a program performs during its runtime
® Output: each hit and miss is logged, and the total number of hits,
misses, and hit rate is printed at the end of the simulation
® Goal: understand how caches work

Background

Locality

® Programs perform many (billions!) of memory accesses during
runtime, but ...
® Principle of locality: At any instant in time, programs only access a
small subset of available memory
o Temporal locality (locality in time): If an item is referenced, it is
likely to be referenced again soon
o Spatial locality (locality in space): If an item is referenced, items
whose addresses are close by are likely to be referenced soon

Memory Hierarchy

e Memory hierarchy uses principle of locality to provide fast access to
memory (on average), while minimizing hardware cost

e Memory Hierarchy (textbook definition):
A structure that uses multiple levels

. . Higher
of memories; as the distance Smaller /bt Faster
from the processor increases, the Regs
size of the memories and the / L1Cache \
. . . L2 Cache
access time both increase while [: N\
Main memory \

. Larger Lower Slower

the cost per bit decreases. $/bit / Disk N

Image source: https://cgi.cse.unsw.edu.au/~reports/papers/0321.pdf

https://cgi.cse.unsw.edu.au/~reports/papers/0321.pdf

Cache Memory

Cache Memory: High-speed memory that is small in size (on the

order of KB or MB) and high in the memory hierarchy

o Stores a subset of main memory data that processor is likely to
need soon

o May store data that has recently been written, depending on
caching scheme

Block AKA line: Unit of transfer between levels of hierarchy

o Consists of multiple (eg. 4) words

Block size: Number of words/block

Cache Hits and Misses

® Cache hit: When processor finds requested data in the upper level of memory
hierarchy

e Cache miss: When processor does not find requested data in upper level of memory
hierarchy
o Requested data must be fetched from a lower level
e Hit rate: Fraction of memory accesses satisfied by upper level
o Example: 95% L1 (level 1) cache hit rate
m 95% of memory accesses satisfied by L1 cache
m Requests to lower level in hierarchy are required for remaining 5% of
memory accesses
® Miss rate: Fraction of memory accesses not satisfied by upper level
o Miss rate is 1 - hit rate; if hit rate is 95%, miss rate is 5%

Cache Organization

Associativity

Associativity: Number of locations in the cache where a given block
of memory can be stored

In an n-way set associative cache, each memory address maps to a
set of blocks in the cache, and the data at that address can be in any
of the blocks in the set

o Each set contains n blocks, also known as ways

This lab simulates a two-way set associative cache

o Cache consists of many sets which each contain two blocks

Finding an address in a set associative cache

Address of access is split up into the tag, index, and offset
e Index identifies set that requested address maps to
e Tag is used to look over the blocks in the set and determine if there is valid data
in the cache for the requested address
o Each block has a valid bit which is 1 if block contains valid data
o Cache hit occurs if valid bit of block is 1 and tag of block matches tag of
access
e Offset is used to identify where requested word is located within the block by
acting as a byte offset from the beginning of the block
o If word size is 4 bytes, then offset = 0 corresponds to first word in block,
offset = 4 corresponds second word in block, etc.

Finding an address in a set associative cache: example

® [Example: 32 KB 2-way set associative cache with block size of 4 on
32-bit machine
o 18 tag bits, 10 index bits, 4 offset bits (see lab description for
how to calculate this)
e Request address: 0XBT1E2E3F4

1611 0661 1116 06010 1110 6611 1111|0100

Tag Index Offset
(bits 31-14) (bits 13-4) (bits 3-0)

Replacement Policy

® Capacity of cache is a lot smaller than main memory
o Data in cache must occasionally be replaced with data that is
needed in the moment
o Replacement policy is used to decide which data to replace
e Least-Recently Used (LRU) replacement policy: Replace blocks that
were used (read/written to) least recently
o According to principle of temporal locality, most recently used
blocks are likely to be used again soon, so keep them in the cache
o This is the policy used in this lab

LRU Replacement Policy Implementation

In an n-way set associative cache, implementing an LRU replacement
policy requires a mechanism to keep track of which of the n ways in a
set was used least recently

When a new block is fetched into that set, the least-recently used
block in the set is replaced

In a two-way set associative cache (like in this lab), the LRU policy is
implemented with a single LRU bit for each set that indicates which of
the blocks in the set was used least recently

o If block 0 was used least recently, LRU bit is O

o If block 1 was used least recently, LRU bit is 1

Write Strategy

Write strategy: Policy for dealing with writes (stores)

Write hit: When processor writes to a block that is in the cache
Write miss: When processor writes to a block that is not in the cache
In this lab:

o The write-back policy is used on a write hit

o The write-allocate with write-back policy is used on a write miss

Write Strategy (on a hit): the write-back policy

o Processor
Dirty bit:

indicates

line is dirty \
Cach

ache

Only write to cache

Must write-back to memory when entry is evicted

Memory Cache line copy
wessss— | in memory is stale

Write Strategy (on a miss): write-allocate with write-back

Processor

Processor issues write

Now line is dirty

Cache

But line is not in the cache

Cache line copy

Must fetch line from memor
in memory is stale ___| Memory y

T — And then write on it

Your Task: Creating a Cache Simulator

Cache Simulator

® This lab consists of implementing four functions that simulate a
two-way set associative cache given a list of requests (loads/stores
with addresses):

o simulateCache

o simulateRequest
o simulateHit

o simulateMiss

e These functions use the requests, tags, and meta_bytes arrays
provided by common. s

simulateCache

simulateCache:

Simulates a two-way set associative cache.

simulateCache must loop over the requests array, calling simulateRequest
for each request and counting the number of hits and misses that occur.
simulateCache must return the total number of hits and the total number of
misses.

Args:
ad: N, the number of requests to memory in the input

Returns:
ad: the total number of hits that occurred
al: the total number of misses that occurred

Register usage:
insert your register usage for this function here

Loops over requests
array

Calls simulateRequest
for each request
Counts number of hits
and misses that occur
using simulateRequest
return value

Returns total number
of hits and total
number of misses

simulateRequest

simulateRequest:

Simulates a single request, given a pointer to a request in the REQUESTS
array. First, simulateRequest must call getTag, getIndex, and getOffset to
get the tag, index, and offset of the requested address.

Then, simulateRequest must determine if the request is a hit or a miss by
comparing the tag of the requested address with the tags of the valid blocks
in the set at the index of the requested address. If block © is valid (the
valide bit is 1) and the tag of block © matches the tag of the requested
address, then there is a hit on block @. Similarly, if block 1 is valid

(the valid1 bit is 1) and the tag of block 1 matches the tag of the
requested address, then there is a hit on block 1. Otherwise, the request
results in a miss.

If the request results in a hit, simulateRequest must call simulateHit and
return 1. If the request results in a miss, simulateRequest must call
simulateMiss and return @.

Args:
af: pointer to a request in the requests array

Returns:
a0: 1 if the request resulted in a hit, @ if the request resulted in a miss

Register usage:
insert your register usage for this function here

Determines if
request is a hit or
miss

Calls simulateHit or
simulateMiss

accordingly

Returns 1 if request
resulted in a hit, O if
request resulted in a
miss

simulateHit

simulateHit:

Given the block that the hit occurred on (block © or block 1),

simulateHit must set the LRU bit to the opposite block (if the hit was on
block @, the LRU bit should be set to 1; if the hit was on block 1, then the
LRU bit should be set to 0).

If the request was a load, the dirty bit of the requested block must be left
unchanged. If the request was a store, then simulateHit must set the dirty
bit of the requested block to 1.

simulateHit must call logHit to print information about the hit.

Args:
ao:
al:
a2:
a3:
a4d:
as:

0 if the request is a load, 1 if the request is a store
tag of the requested address

index of the requested address

offset of the requested address

pointer to meta_bytes[index]

@ if the hit is on block 8, 1 if the hit is on block 1

Register usage:
insert your register usage for this function here

Simulates a cache hit
Updates LRU bit

Sets dirty bit to 1 if
request was a store
Calls 1logHit helper
function to print
information about
the hit

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

simulateMiss

simulateMiss:

simulateMiss must determine which block to replace by checking the LRU bit
of the set (if the LRU bit is ©, replace block @; if the LRU bit is 1,
replace block 1). Then, simulateMiss must check the valid bit and dirty bit
of the replaced block to determine if a write-back should occur (if the
valid bit is 1 and the dirty bit is 1, then write-back; otherwise, don't
write-back).

simulateMiss must set the dirty bit of the replaced block to
0 if the request is a load or 1 if the request is a store.

simulateMiss must call logMiss to print information about the miss and
whether or not a write-back occurred.

simulateMiss must replace the tag of the replaced block with the tag of the
request, and set the valid bit of the replaced block to 1. Lastly,
simulateMiss must update the LRU bit of the set to the non-replaced block
(if block © was replaced, then the LRU bit should be set to 1; if block 1
was replaced, then the LRU bit should be set to 9).

Args:
a0: @ if the request is a load, 1 if the request is a store
al: tag of the requested address
a2: index of the requested address
a3: offset of the requested address
a4: pointer to tags[index]
a5: pointer to meta_bytes[index]

Register usage:
insert your register usage for this function here

Simulates a cache miss

Checks LRU bit to determine which
block to replace

Checks valid and dirty bit of replaced
block to determine if write-back occurs
Calls 1logMiss helper function to print
information about the miss

Sets dirty bit of replaced block to O if
request was load, 1 if request was store
Replaces tag of block with tag of
request

Sets valid bit of replaced block to 1
Updates LRU bit

Recommended lab completion flow

1. Implement simulateCache
o Not too hard, just a loop over the REQUESTS array
2. Implement simulateRequest
o A bit more difficult, requires checking the tags in the set at the
index of the requested address to determine if hit or miss
3. Implement simulateHit
o Simpler than simulateMiss, so implement it first
4. Implement simulateMiss last
o Most complicated part of the lab (will take the most time)

Tips for completing the lab

e Carefully read the function headers! This will save you time!
o This includes the functions you have to implement, as well as helper functions

e Use the helper functions:

logHit for printing information about a cache hit

logMiss for printing information about a cache miss

getTag for getting the tag of an address

getIndex for getting the index of an address

getOffset for getting the offset of an address

A correct lab solution must call logHit and 1logMiss to print required output

e Don’t forget to fill out the register usage section in the header of all

O O O O O O

four functions that you implement

Data Structures

requests array

e Contains information about each Example: load_and_store. txt test case

consists of two requests:

1 0x1771F984
s Ox32BBEF44

® REQUESTS global variable pointsto Assuming REQUESTS = 0x100100080, the

base address of the array requests array would look like this:
O 1la t@, REQUESTS

e Each request is represented by two
32-bit words: 1 0x1771F984 s Ox32BBEF44

i i requests|[0] requests|[1]
o 0if the requestis aload,
. . 0x10010008 | 0x1001000C
1 if the request is a store

request passed as input

O Initialized by common.s

REQUESTS = 0x10010000

o The requested address

tags array

® Contains tags for the blocks in each set
o Initialized to O by common.s

® TAGS global variable points to base address of the array
O la tO, TAGS

e Each element tags[i] of the tags array consists of two 32-bit words:
o Tag of block 0 in the set with index i
o Tag of block 1 in the set with index i

® Lab solution must update the tags in the tags array when simulating a
cache miss

meta_bytes array

e Contains LRU bits for each set, and valid and dirty bits for each block
O Initialized to O by common.s

® META_BYTES global variable points to base address of the array
O la tO, META_BYTES
e Each element of meta bytes array is a meta byte, where:
o Bits 7-5 are not used
Bit 4 is the LRU bit for the set
Bit 3 is the valid bit for block 0
Bit 2 is the dirty bit for block 0
Bit 1 is the valid bit for block 1
Bit O is the dirty bit for block 1

O O O O O

Testing and Final Remarks

Test case format

® A small number of tests are provided in the Tests directory
o The provided tests are not extensive: you should create your own
tests to ensure that your solution is correct
e Expected output for the test files is given in the *.out files
® The format of the test input (*. txt) files is as follows:
[N (# of requests)] [S (# of sets)]

[# of tag bits] [# of index bits] [# of offset bits]
[request 1]

[request 2]

[request N]

Running a test

® Torun a test, provide test file as a program argument to RARS
o Program arguments must be enabled using pa flag if running test
via terminal, or RARS graphical interface if running test with RARS
® FExample: To run the load_and_store. txt test case:

rars cacheSimulator.s nc pa Tests/load_and_store.txt

Or, using the RARS graphical interface, enter the path in the program
arguments field before assembling and running the program:

" Edit | Execute |
Cllsdseameptisii iz
Program Arguments: |Tests/load and store.txt

Final Remarks

e Read the lab description carefully!
o Watch the videos in the lab description!
® Create your own test cases for edge cases
o Pay attention to the Testing section and the Assumptions and
Notes section in the lab description to create valid test cases
e Read the marksheet (link in the Marking Guide section of lab
description) to see how your lab will be graded
e Don’t be afraid to ask questions
e Style marks are an easy 20%

