
Introduction to Lab
Data Compression
José Nelson Amaral

Data Compression

• Converting data into a smaller form for storage or transmission

• Lossy Compression

• Lossless Compression

Dictionary Compression

• Lossless compression

• Method of reducing redundancy in data

• Copies common patterns in a data structure called a dictionary

• Replaces occurrences of those patterns with a small reference to the
dictionary element containing the full copy

Tables in Memory

Input

An array of words stored in memory

common.s:
• reads a text file and stores in memory as an array of words
• passes address of first word to buildTables and encode functions

The end of the array is signaled by a sentinel word

Conversion of Input Text File into
Array of Words Memory

Address Word

0x10010800 twin

0x10010804 kle_

0x10010808 twin

0x1001080c kle_

0x10010810 litt

0x10010814 le_s

0x10010818 tar!

0x1001081c \0\0\0\0

twinkle_twinkle_little_star!

Lab Compression Format Workflow

Helper Tables

Dictionary

Encoding

Input Array

Output Array

To be implemented in
this lab

Word Table

(Index) Address Word

00000000 0x10011000 twin

00000001 0x10011004 kle_

00000010 0x10011008 litt

00000011 0x1001100c le_s

00000100 0x10011010 tar!

twinkle_twinkle_little_star!

• Stores each unique word from the input file exactly once, in the order
that they first appeared in the file

Count Table

(Index)

00000000

00000001

00000010

00000011

00000100

Address Word

0x10011000 twin

0x10011004 kle_

0x10011008 litt

0x1001100c le_s

0x10011010 tar!

Word Table

Address Count

0x10021000 2

0x10021001 2

0x10021002 1

0x10021003 1

0x10021004 1

Count Table

twinkle_twinkle_little_star!

• Contains the number of times that each word appears in the input
• Each count is stored as a byte
• Count Table is index correlated to the Word Table

Dictionary
• Table containing up to 128 words from the Word Table
• Needs to be part of the output for decoding to be possible

• To avoid taking too much space, only includes words that occur
multiple times in the input

• Words are picked using the Count Table
• A function to build a dictionary is provided to you

(Index) Address Word

00000000 0x100120fc twin

00000001 0x100120fd kle_

twinkle_twinkle_little_star!

Creating the Compressed Sequence
• For each word in the input

• If the word does not have a copy in the dictionary, output the
word as-is

• If there is a copy in the dictionary, instead output a dictionary
reference byte

• The decompressor can tell that a byte is a reference to the dictionary
because the most-significant bit (MSB) of the byte is 1.

10000001Dictionary reference byte to index 1:
bit [7]: 1
bits [0-6]: the index in the dictionary containing the word being referenced

Compressed Sequence

(Index) Address Word

00000000 0x100120fc twin

00000001 0x100120fd kle_

twinkle_twinkle_little_star!Input:

Dictionary:

Compressed Sequence: [ref0][ref1][ref0][ref1]little_star!

10000000

10000001

(28 bytes)

(16 bytes)

Output Format
• Place entire dictionary at the beginning of the output
• Place a null character byte (0) to signal end of dictionary
• Place the compressed sequence
• Place the end-of-array sentinel word

twinkle_[null][ref0][ref1][ref0][ref1]little_star! (25 bytes)

dictionary compressed sequence

00000000

Decoding
• Replace dictionary reference bytes with the referenced word in

the dictionary

twinkle_[null][ref0][ref1][ref0][ref1]little_star!

twinkle_twinkle_little_star!

Lab Assignment
• buildTables: generate word table and index-correlated count table

• buildDictionary – provided to students: generates a dictionary
based on the word and count tables generated in buildTables

• encode: generate the output

Testing
• print-tables.o: prints tables generated by student solution

column by column

• print-encoding.o: prints encoding generated by student
solution in a human-readable format

• decode.o: decodes the encoding and prints it

• CheckMyLab

