
Fix Branch
CMPUT 229

University of Alberta

Consider the original program below

1

2

3

4

5

foo:

 beq t0 t1 target

 addi t0 t0 1

target:

 addi t1 t1 1

RISC-V Assembly

Address Code Basic

0x00400024 0x00628463 beq x5, x6, 0x00000008

0x00400028 0x00128293 addi x5, x5, 1

0x0040002c 0x00130313 addi x6, x6, 1

RARS

Address of branch target is 0x0040002c

After inserting three instructions, we obtain the modified program.

Address Code Basic

0x00400024 0x00628463 beq x5, x6, 0x00000008

0x00400028 0x00128293 addi x5, x5, 1

RARS

0x0040002c 0x00128313 addi x6, x5, 1

0x00400030 0x00130393 addi x7, x6, 1

0x00400034 0x00138e13 addi x28, x7, 1

0x0040002c 0x00130313 addi x6, x6, 1

0x00400038 0x00130313 addi x6, x6, 1

Address of branch target is changed to 0x00400038

Branch offset did not change

RARS
Branch offset did not change

0x0040002c

0x00128293

addi x28, x7, 1

0x00400028

0x00400024

Address

0x00628463

Code Basic

0x00400038

0x00400034

0x00400030

0x00138e13

0x00130393

addi x6, x6, 1

addi x6, x6, 1

addi x7, x6, 1

0x00130393

addi x6, x6, 1

beq x5, x6, 0x00000008

0x00130313

Task

Adjust the offset such that the branch instruction branches to the same
target label as it did in the original program

RISC-V Branch Instructions
beq Branch EQual

bge Branch Greater than or Equal

bgeu Branch Greater than or Equal Unsigned

blt Branch Less Than

bltu Branch Less Than Unsigned

bne Branch Not Equal

SB Type Format

All branch instructions are encoded in the SB Instruction Type Format
31 25 24 20 19 15 14 12 11 7 6 0

imm[12|10:5] rs2 rs1 funct3 imm[4:1|11] opcode

The relative offset is encoded in bits 7-11 & 25-31 of the instruction

SB Type Format - Limitations

• Only 13 bits to to specify the offset (the lowest bit of the immediate is
always zero)
◦ The distance between a branch instruction and its target is limited

• Inserting instructions may push the target beyond the reach of the
branch instruction
◦ Assume this will never the case in this lab

Jump Instructions

• Inserting instruction can also affect jump instructions
• You DO NOT need to adjust the immediate value of jump instructions

in this lab

Fixing Branch Instructions

• A branch instruction only needs to be fixed if instructions are inserted
between itself and the branch target

• To calculate the address of the branch target, T, follow the algorithm
below:
1. L ← immediate of the branch instruction
2. A ← L << 1
3. S ← sign extend A to 32 bits
4. T ← S + PC

• Here, PC refers to the address that was used to load the instruction
from memory

Insertion Points

• Address of the instruction (in the original program) before a block of
added instructions

Insertion Points - Demonstration
Original Program Modified Program

0x10010000

0x10010004

0x10010008

0x1001000c

0x10010010

foo: addi t0 zero 1

addi t1 zero 2

bne t0 zero T1

add a7 t0 t1

T1: jr ra

foo: addi t0 zero 1

addi t1 zero 2

bne t0 zero T1

add a7 t0 t1

add t6 t3 t1

and t0 t3 t1

or t6 t3 t1

T1: jr raInsertion point: []
Number of instructions inserted:
[]

0x1001000c

3

Terminologies

Different Types of Programs

• The modified program is obtained by inserting instructions into the
original program.

• Branch instructions in the modified program must be fixed so that
they jump to the same label as they did in the original program.

• The fixed program refers to the modified program with fixed branch
instructions.

Instructions Array

• The instructions array of a program is an array of RISC-V instructions
in binary representation

• The instructions in the array are the instructions in the program.

Insertion Points Array

• The insertion points array is an array of all the insertion points.
• The array must be sorted in ascending order by the value of the

insertion points.

Insertions Array

• The insertions array is an array of natural numbers
• The i'th element in the array is the number of instructions inserted at

the i'th insertion point in the insertion points array.

Branches Array

• The branches array contains the addresses of all the branch
instructions in the original program.

• Elements in the array must be sorted in ascending order by the
addresses of the branch instructions.

Targets Array

• The targets array contains the addresses of the target instructions for
all the branch instructions in the branches array.

• The i'th element in the array is the address of the branch target for
the i'th branch instruction in the branches array.

An Important Note

• All arrays are terminated by the sentinel value 0xFFFFFFFF

Assignment
Students must implement all of the following functions

fixBranch
This function is the entry point of student's solution to this lab. It fixes branch
instructions in the modified program such that they branch to the same target as they
did in the original program. Writes the instructions of the fixed program program to a
separate array.

Arguments:
a0: Pointer to the instructions array of the original program.

 a1: Pointer to the instructions array of the modified program.
 a2: Pointer to an empty array that is the same size as the instructions array
 of the modified program. This function must write the instructions of the
 fixed program to this array and terminate it with the sentinel value
 0xFFFFFFFF.

Returns:
None

findInsertions
Finds all the insertion points and how many instructions were inserted after each
insertion point

Arguments:
a0: Pointer to the instructions array of the original program.
a1: Pointer to the instructions array of the modified program.

Returns:
a0: Pointer to the insertion points array.
a1: Pointer to the insertions array.

findBranches
Finds all the branches and their respective targets in the original program

Arguments:
a0: Pointer to the instructions array of the original program.

Returns:
a0: Pointer to the branches array
a1: Pointer to the targets array

Resources

We provide the two Python progams:
• binDecompiler.py: a decompiler for RISC-V assembly.
• hexToBin.py: converts hexadecimal numbers in textual format to

binary format and writes the results to a file. Expects one
hexadecimal number per line.

Important Information

• The webpage and README contains the specifications and example
usages of the two Python programs in the previous slide.

• The webpage also contains step-by-step instructions on how to create
your own test cases and how to test you solution to the lab.

Testing your Lab

Input Guarantees

• The binary representation of the RISC-V programs are terminated by
the sentinel value 0xFFFFFFFF.

• There will be a maximum of 50 instructions inserted to the modified
program

• There will be a maximum of 25 branches to fix.
• All instructions are valid RISC-V instructions.
• Neither branches nor jumps will ever be inserted to the original

program to create the modified program.

original.s

Start with a RISC-V .s file that satisfies the
constraints outlined in the Input
Guarantees slide

original.s

1. Dump the source file into
binary using RARS

rars a dump .text Binary original.bin original.s

original.bin

2. Decompile the binary file

original_decomp.tsv

original_decomp.txt

python3 binDecompiler.py b original.bin -o original_decomp

3. Create the modified
program

Creating the Modified Program

• Option 1: Use a spreadsheet editor
◦ Google Spreadsheets
◦ Microsoft Excel
◦ Some IDE’s

• Option 2: Use a plain text editor

Option 1

Open original_decomp.tsv with a spreadsheet editor

Address Code Source

0x00400024 0x00628463 beq x5, x6, 0x00000008

0x00400028 0x00128293 addi x5, x5, 1

0x0040002c 0x00130313 addi x6, x6, 1

Address Code Source

0x00400024 0x00628463 beq x5, x6, 0x00000008

0x00400028 0x00128293 addi x5, x5, 1

0x00128313

0x00130393

0x00138e13

0x0040002c 0x00130313 addi x6, x6, 1

Insert hexadecimal representation of valid
RISC-V instructions in the ‘Code’ column

Option 2

Open original_decomp.txt with a plain text editor

0x00628463
0x00128293
0x00130313

Insert hexadecimal representation of valid RISC-V instructions

0x00628463
0x00128293
0x00128313
0x00130393
0x00138e13
0x00130313

original.s

1. Dump the source file into
binary using RARS

rars a dump .text Binary original.bin original.s

original.bin

2. Decompile the binary file

original_decomp.tsv

original_decomp.txt

python3 binDecompiler.py b original.bin -o original_decomp

3. Create the modified
program

modified.txt

original_decomp.tsv

(modified)

Option 1

Option 2

Save as
4. Generate the binary file for the
modified program

python3 hexToBin.py -i modified.txt -o modified.bin

Provide file name as command line argument

python3 hexToBin.py -o modified.bin

Provide instructions in the ‘Code’ column to standard input

modified.bin

5. Run fixBranch.s with the binary files of
the orginal and the modified programs

lab.out
rars fixBranch.s pa original.bin modified.bin nc > lab.out

6. Check solution output
lab_out_decomp.tsv

lab_out_decomp.txt

python3 binDecompiler.py h lab.out -o lab_out_decomp

