
Lab #3: Fractal

CMPUT 229

Background

CMPUT 229

Overview

Rendering the Mandelbrot Fractal:
In this lab you will write functions to render the Mandelbrot fractal.

To perform computations on complex numbers, we will have to use RISC-V’s floating
point capabilities.

The Mandelbrot fractal is definied using complex numbers.

Rendering will be performed using the GLIR library.

Complex Numbers

What are Complex Numbers:
Complex numbers have a real and imaginary part. For example, the number 2 + 3i has
real part 2 and imaginary part 3.

Algebraic operations on complex numbers work the same as on real numbers, if i is
treated as a variable, and i2 = -1.

The special value i statisfies i2 = -1.

Complex addition: Complex Multiplication:

The Mandelbrot Set

What is the Mandelbrot Set
The Mandelbrot set is a set of complex numbers definied by a recursive function:

zn = z2
n-1 + c

z0 = c

A given complex number c belongs to the Mandelbrot set if zn does not tend to infinity as
n increases.

It is known that no complex number z such that |z| ≥ 2 is in the Mandelbrot set. Thus
only iterations where |zn| < 2 need be computed.

The Mandelbrot Set

Mandelbrot Animations

Animating the Mandelbrot Set
The number of iterations until |zn| > 2 is called the escape time.

For a given complex number, we can colour that point based on the escape time.

GLIR

GLIR – Graphics Library for RISC-V
Graphical output will be handled with GLIR.

Each cell can have a character (symbol), a foreground colour, and a background colour.

GLIR emulates graphics by printing cells onto the terminal window.

The Terminal

Form of the Terminal
Grid of cells, with rows and columns.

Coordinates are of the form (row, column).

Cells are rectangular

Coordinate Systems

There are two coordinates systems in this assignment:
Complex coordinates, used by the Mandelbrot fractal.

To render the fractal, we must convert between coordinates.

Terminal coordinates, used to draw to the terminal.

Mandelbrot Coordinates

Mandelbrot Coordinates -> Complex Plain:
The Mandelbrot set is defined on the complex plane.

We can represent a rectangular region of the complex plain using two intervals: one for
the range of real values, and another for the range of imaginary values.

We will use the notation [min_r, max_r] to refer to the range of real values, and
[min_i, max_i] for the range of imaginary values.

The entire region can be described by: ([min_r, max_r], [min_i, max_i]).

Mandelbrot Coordinates

Consider the region given by: ([-3, 4], [-2, 1]).

Terminal Coordinates

Terminal Window:
The terminal has a number of rows and columns.

The column position represents the horizontal distance from the left side of the screen.

The row position represents the vertical distance from the top of the screen.

Translation:
Each cell is represented by the point at its top left corner.

Terminal cells are mapped directly to the complex plain.

The function getStep computes the step size used in this mapping.

Example Mapping

Consider the mapping between the region ([-2.5, 1], [-1,1]) to a 6 by 8 terminal:

Changing The Region

Symbols & Colour

Colour Palette:
GLIR uses ANSI escape codes, which modify properties of the text in the terminal.

GLIR abstracts away the details of ANSI escape codes, and allows you to select colours
from a lookup table:

The colours used for the fractal are stored at the palette variable. Points that don’t
escape are coloured using the value of the in_color variable.

Symbols

Characters in the Terminal:
GLIR can print strings to the terminal.

The number of symbols is in symbol_size.

The characters used in this assigment are stored starting at the symbols label.

Rendering

Using Colours and Symbols to Render the Mandelbrot Set:
In this lab, you will use both colours and symbols for rendering.

Thus we find escape_time mod palette_size and use that to index into the tables.

There are a finite number of colours and symbols, but infinite possible escape times.

This causes the colours and symbols to repeat in sequence.

Floating Point

RISC-V Support For Floating Point:
Floating point is supported in RISC-V through the “F”, “D”, and “Q” extensions.

In this lab we are concerned with the “D” extension, which adds support for 64-bit floating
point (double precision).

Floating point extension:
The “D” extension adds 32 additional floating point registers, each of which can hold a
64-bit float.

We will use rd, rs1, and rs2 as the integer destination and source registers.

We use double precision floats rather than single precision to allow us to render the
fractal in greater detail, and to reduce numerical issues.

We will use fd, fs1, and fs2 as the floating point destination and source registers.

The extension adds instructions for floating point conversion, arithmatic, control, and
data movement.

Conversion Instructions

fcvt.d.w fd, rs1 Convert the value in rs1 to a 64-bit float and store in fd.

fcvt.w.d rd, fs1 Convert the value in fs1 to 32-bit signed integer and store the
result in rd.

Arithmetic Instructions

fadd.d fd, fs1, fs2 Sum fs1 and fs2, then store the result in fd.

fsub.d fd, fs1, fs2 Subtract fs1 and fs2, then store the result in fd.

fmul.d fd, fs1, fs2 Multiply fs1 and fs2, then store the result in fd.

fdiv.d fd, fs1, fs2 Divide fs1 by fs2, then store the result in fd.

Control Instructions

feq.d rd, fs1, fs2 Set rd to 1 if fs1 = fs2, set to 0 otherwise.

flt.d rd, fs1, fs2 Set rd to 1 if fs1 < fs2, set to 0 otherwise.

fge.d rd, fs1, fs2 Set rd to 1 if fs1 ≥ fs2, set to 0 otherwise.

We cannot branch directly on floating point conditions. Instead the
following instructions store a 1 or 0 depending on the condition.

Data Movement Instructions

fmv.d fd, fs1 Copy the value in fs1 to fd.

fld fd, X(rs1) Load into fd the value at rs1 + X.

fsd fd, X(rs1) Store into memory at rs1 + X the value in fd.

Calling Conventions

RISC-V Floating Point Calling Convetions:
The RISC-V floating point registers are logically partitioned into temporary, saved, and
argument groups.

These groups function in the same way as the integer registers.

Example Floating Point Code

We have provided some sample programs in the Code/Examples directory.

Assignment

CMPUT 229

Overview of the lab

Overview:
In this lab, you must implement a series of functions to render the Mandelbrot
fractal.
You are required to implement all of the following functions.

renderFractal

a0: Number of rows.

N/A

Parameters:

Return Value:

This function renders a portion of the the Mandelbrot fractal.
Description:

a1: Number of columns.

a2: Maximum iterations.

fa0: max_i
fa1: min_i
fa2: max_r
fa3: min_r

calculateEscape

a0: Maximum number of iterations.

a0: 1 if c escaped before max iterations, 0 otherwise.

Parameters:

Return Values:

Calculate the escape time up to the given maximum for a
complex number c.

Description:

fa0: Real part of c.
fa1: Imaginary part of c.

a1: Number of iterations before escape. If the maximum number of
iterations was reached, this should be the maximum number of iterations.

getStep

fa0: Real step size.
Return Value:

Compute the real and immaginary step sizes.
Description:

a0: Number of rows.
Parameters:

a1: Number of columns.

fa0: max_i

fa1: min_i
fa2: max_r
fa3: min_r

fa1: Immaginary step size.

Testing

CMPUT 229

Testing your Solution
Included tests:

We have provided some test inputs and outputs.

Tests are stored in the “Tests” directory. *.txt files correspond to
the inputs, while *.out files are the expected outputs.

Format of the test file:
Make sure the test file has the correct format (refer to the website).

RARS may need the full path to the test file.

	Lab #3: Fractal
	Background
	Overview
	Complex Numbers
	The Mandelbrot Set
	The Mandelbrot Set (2)
	Mandelbrot Animations
	GLIR
	The Terminal
	Coordinate Systems
	Mandelbrot Coordinates
	Mandelbrot Coordinates (2)
	Terminal Coordinates
	Example Mapping
	Changing The Region
	Symbols & Colour
	Symbols
	Rendering
	Floating Point
	Conversion Instructions
	Arithmetic Instructions
	Control Instructions
	Data Movement Instructions
	Calling Conventions
	Example Floating Point Code
	Assignment
	Overview of the lab
	Slide 28
	Slide 29
	Slide 30
	Testing
	Slide 32

