CMPUT 229

Lab #3: Fractal

CMPUT 229

Background

Overview

Rendering the Mandelbrot Fractal:
In this lab you will write functions to render the Mandelbrot fractal.
The Mandelbrot fractal is definied using complex numbers.

To perform computations on complex numbers, we will have to use RISC-V'’s floating
point capabilities.

Rendering will be performed using the GLIR library.

Complex Numbers

What are Complex Numbers:

Complex numbers have a real and imaginary part. For example, the number 2 + 3i has
real part 2 and imaginary part 3.

The special value i statisfies 12 = -1.
Algebraic operations on complex numbers work the same as on real numbers, if i is
treated as a variable, and i? = -1.

Complex addition: Complex Multiplication:

(3+2¢)+ (4 —1) (3427)-(4—1)

=(3+4)+(2—1)i =3-4)+ B -—1)+(20-4)+ (20 - —1)

=T+ =12 — 3i + 8i + —2¢°

= 14 4 52

The Mandelbrot Set

What is the Mandelbrot Set
The Mandelbrot set is a set of complex numbers definied by a recursive function:

Zo = C
Zn = Z2%,.1 + C

A given complex number c belongs to the Mandelbrot set if z, does not tend to infinity as
n increases.

It is known that no complex number z such that |z| > 2 is in the Mandelbrot set. Thus
only iterations where |z.,| < 2 need be computed.

The Mandelbrot Set

Re[c]

Mandelbrot Animations

Animating the Mandelbrot Set

The number of iterations until |z,| > 2 is called the escape time.
For a given complex number, we can colour that point based on the escape time.

GLIR

GLIR - Graphics Library for RISC-V
Graphical output will be handled with GLIR.
GLIR emulates graphics by printing cells onto the terminal window.
Each cell can have a character (symbol), a foreground colour, and a background colour.

Form of the Terminal

Grid of cells, with rows and columns.
Cells are rectangular

Coordinates are of the form (row, column).

The Terminal

Rows

(ROWS, COLS) == (R, C)

WDIIIIIIIIW?}
111000
111000
L
111000
L
111000
e ||]| GEE

Coordinate Systems

There are two coordinates systems in this assignment:
Complex coordinates, used by the Mandelbrot fractal.
Terminal coordinates, used to draw to the terminal.

To render the fractal, we must convert between coordinates.

Mandelbrot Coordinates

Mandelbrot Coordinates -> Complex Plain:

The Mandelbrot set is defined on the complex plane.

We can represent a rectangular region of the complex plain using two intervals: one for
the range of real values, and another for the range of imaginary values.

We will use the notation [min_r, max_r] to refer to the range of real values, and
[min_i, max_i] for the range of imaginary values.

The entire region can be described by: ([min_r, max_r], [min_i, max_i]).

Mandelbrot Coordinates

Consider the region given by: ([-3, 4], [-2, 1]).

Im

Terminal Coordinates

Terminal Window:
The terminal has a number of rows and columns.
The row position represents the vertical distance from the top of the screen.
The column position represents the horizontal distance from the left side of the screen.

Translation:
Each cell is represented by the point at its top left corner.
Terminal cells are mapped directly to the complex plain.
The function getStep computes the step size used in this mapping.

Example Mapping

Consider the mapping between the region ([-2.5, 1], [-1,1]) to a 6 by 8 terminal:

‘ Complex Coordinates ‘ ‘ Terminal Coordinates ’

Re
tep_i —1" B < BRI S
—9 5 — \z
stepr

Changing The Region

File Edit View Terminal Tabs Help

Symbols & Colour

Colour Palette:

GLIR uses ANSI escape codes, which modify properties of the text in the terminal.
GLIR abstracts away the details of ANSI escape codes, and allows you to select colours

from a lookup table:

The colours used for the fractal are stored at the palette variable. Points that don’t

escape are coloured using the value of the in_color variable.

Standard colors

High-intensity colors

BTN 9 A s SN o v N

216 colors
27 28 29 30 31 32 33
63 64 65 66 (Y4 68 69

99 100 101 102 103 104 105 , Ll g 113 114
135 136 137 4 145 146 147 148 149 150
171 172 P73 T 0 181 182 183 184 185 186

215 216 217 218 219 220 221 222
Grayscale colors

207 208

249

79
115
151
187
223

250

80
116
152
188
224

81
117
153
189
225

251

82
118
154
190
226

252

83
1S
155
191
227

84
120
156
192
228

253

a8 49

85
121
157
193
229

254

15

86
122
158
194
230

51
87
123
159
195
231

255

Symbols

Characters in the Terminal:
GLIR can print strings to the terminal.
The characters used in this assigment are stored starting at the symbols label.
The number of symbols is in symbol size.

Rendering

Using Colours and Symbols to Render the Mandelbrot Set:

In this lab, you will use both colours and symbols for rendering.
There are a finite number of colours and symbols, but infinite possible escape times.
Thus we find escape_time mod palette_size and use that to index into the tables.

This causes the colours and symbols to repeat in sequence.

Floating Point

RISC-V Support For Floating Point:
Floating point is supported in RISC-V through the “F”, “D”, and “Q” extensions.
In this lab we are concerned with the “D” extension, which adds support for 64-bit floating
point (double precision).
We use double precision floats rather than single precision to allow us to render the
fractal in greater detail, and to reduce numerical issues.

Floating point extension:

The “D” extension adds 32 additional floating point registers, each of which can hold a
64-bit float.

The extension adds instructions for floating point conversion, arithmatic, control, and
data movement.

We will use rd, rs1, and rs2 as the integer destination and source registers.
We will use fd, fs1, and fs2 as the floating point destination and source registers.

Conversion Instructions

fcvt.d.w fd, rsi Convert the value in rs1 to a 64-bit float and store in fd.

fcvt.w.d rd, fsl Convert the value in fs1 to 32-bit signed integer and store the
result in rd.

fadd.d fd,
fsub.d fd,
fmul.d fd,
fdiv.d fd,

fs1,
fsi,
fsi,
fs1,

fs2
fs2
fs2
fs2

Arithmetic Instructions

Sum fs1 and fs2, then store the result in fd.
Subtract fs1 and fs2, then store the result in fd.
Multiply fs1 and fs2, then store the result in fd.
Divide fs1 by fs2, then store the result in fd.

Control Instructions

We cannot branch directly on floating point conditions. Instead the
following instructions store a 1 or @ depending on the condition.

feq.d rd, fsl, fs2 Setrdtol1lif fs1 = fs2, set to 0 otherwise.
flt.d rd, fs1, fs2 Setrdtol1lif fs1 < fs2, set to 0 otherwise.
fge.d rd, fsl, fs2 Setrdtol1lif fs1 > fs2, set to 0 otherwise.

Data Movement Instructions

fmv.d fd, fsl Copy the value in fs1 to fd.
f1d fd, X(rsl) Load into fd the value at rs1 + X.
fsd fd, X(rsl) Store into memory at rs1 + X the value in fd.

Calling Conventions

RISC-V Floating Point Calling Convetions:

The RISC-V floating point registers are logically partitioned into temporary, saved, and
argument groups.

These groups function in the same way as the integer registers.

Register | ABI Name | Description Saver
x0 Zero Hard-wired zero —

x1 ra Return address Caller
x2 sp Stack pointer Callee
%3 gp Global pointer —

x4 tp Thread pointer —
x5-7 t0-2 Temporaries Caller
x8 sO/fp Saved register/frame pointer Callee
x9 s1 Saved register Callee
x10-11 | a0-1 Function arguments/return values | Caller
x12-17 | a2-7 Function arguments Caller
x18-27 | s2-11 Saved registers Callee
x28-31 | t3-6 Temporaries Caller
£0-7 f£0-7 FP temporaries Caller
£8-9 fs0-1 FP saved registers Callee
£10-11 | fa0-1 FP arguments,/return values Caller
f12-17 | fa2-7 FP arguments Caller
f18-27 | fs2-11 FP saved registers Callee
£28-31 | ft8-11 FP temporaries Caller

Example Floating Point Code

We have provided some sample programs in the Code/Examples directory.

CMPUT 229

Assignment

Overview of the lab

Overview:

In this lab, you must implement a series of functions to render the Mandelbrot
fractal.

You are required to implement all of the following functions.

renderFractal

Description:
This function renders a portion of the the Mandelbrot fractal.

Parameters:
a0: Number of rows. fa0: max_1
al: Number of columns. fal:min_ 1
a2: Maximum iterations. fa2: max_r

fa3: min_r

Return Value:
N/A

calculateEscape

Description:
Calculate the escape time up to the given maximum for a
complex number c.

Parameters:
a0: Maximum number of iterations.

fa0: Real part of c.
fal: Imaginary part of c.

Return Values:
a0: 1 if c escaped before max iterations, @ otherwise.

al: Number of iterations before escape. If the maximum number of
iterations was reached, this should be the maximum number of iterations.

getStep

Description:
Compute the real and immaginary step sizes.

Parameters:
a0: Number of rows. fal:min_ 1
al: Number of columns. fa2: max_r
fa0: max_1i fa3: min_r

Return Value:

+a0: Real step size.
fal: Immaginary step size.

CMPUT 229

Testing

Testing your Solution

Included tests:

We have provided some test inputs and outputs.

Tests are stored in the “Tests” directory. *.txt files correspond to
the inputs, while *.out files are the expected outputs.

Format of the test file:

Make sure the test file has the correct format (refer to the website).
RARS may need the full path to the test file.

	Lab #3: Fractal
	Background
	Overview
	Complex Numbers
	The Mandelbrot Set
	The Mandelbrot Set (2)
	Mandelbrot Animations
	GLIR
	The Terminal
	Coordinate Systems
	Mandelbrot Coordinates
	Mandelbrot Coordinates (2)
	Terminal Coordinates
	Example Mapping
	Changing The Region
	Symbols & Colour
	Symbols
	Rendering
	Floating Point
	Conversion Instructions
	Arithmetic Instructions
	Control Instructions
	Data Movement Instructions
	Calling Conventions
	Example Floating Point Code
	Assignment
	Overview of the lab
	Slide 28
	Slide 29
	Slide 30
	Testing
	Slide 32

