
Introduction to Hash Table Lab
CMPUT 229

José Nelson Amaral



Lab Requirements

RISC-V
• Function calls and register convention.
• Loading and storing from memory.
General
• Hash tables, key/value stores.
• Hashing.
• Linked Lists.
• Dynamic Memory Allocation.



Overview

Key Value

CMPUT 229 154

“Number of students enrolled in a course”

STAT 151 98

CHEM 101 248

Insert (aka. Add, 
Append)

Find (aka. Get)

Delete (aka. 
Remove)

Functions



Hashing Functions

• Calculates the same hash for 
each unique input.
• Predictable outputs.
• Hard to reverse the process.
• Multiple inputs can have the 

same hash.
• Pseudorandom.

MD5

SHA256

Some popular hashing algorithms



Hash Table

Key

Value

CMPUT 229

154

“Number of students enrolled in a course”

STAT 151

98

CHEM 101

248

23

44

12

Hash Function

Hash

0
1

…

…

…

63
…



(Singly) Linked Lists

Data

Data

Data

• Two parts: data and pointer to 
next item.
• Easy to grow and shrink.
• Don’t need to know the full size 

at creation.
• Slower than typical arrays, where 

data is right next to each other.

Start of list



Dynamic Memory Allocation

• If you don’t know how much memory you need while you’re writing 
the program, you can ask the OS to allocate memory for you 
dynamically, or while the program is running.
• Requires you to manage memory in code (needing to allocate and 

deallocate/free).
• For part 3 of this lab, you can call the function alloc to provide you 

with an area of memory that you can use to grow the list.



Creating a Hash Table in RISC-V

• This lab is split into 3 parts:

hash

equals

insert

find

delete

insert_col

find_col

delete_col

Part 1: Helper Functions Part 2: Implement a 
Hash Table

Part 3: Implement a 
Hash Table with Collisions

Detailed videos on how each of the algorithms work are embedded on the lab page. 



Representing the Entries as an Array

• In this lab, you are given an array for storing items in the hash table.
• We have to represent a 2D array in memory, which is one dimension.
• The layout is different in part 2 and part 3, so pay attention!

key valuehash = 0

key value
key value

key value key value key valuehash = 1

hash = 2

hash = 0 hash = 1 hash = 2

PART 2

PART 3

key valuehash = 0

key value
key value

hash = 1

hash = 2

next
next
next

key value next key value next

Every block in the
diagram is 1 word 
or 4 bytes long.

hash = 0 hash = 1



Part 1

• You will implement the functions hash
and equals.
• The hash algorithm is a modified

version of djb2, using the seed 5381.
• equals checks if 2 strings are equal.



Part 2

• You will implement a hash table (insert, find, delete), with no 
collisions.
• You must call functions hash and equals.
• hash is used to calculate the index of the array.
• For find and delete, you must first check that the key in the hash 

table matches the key that is given in the function using equals.
• We will not try to insert 2 items with the same name or the same 

hash (no collisions).



Part 3

• You will implement a hash table, with collisions
• You must call hash, equals, and alloc.
• Collisions occur when you try to insert two items that have the same 

hash.
• We will use a linked list to store overflow (extra) entries. You can call 

alloc to allocate room for the overflow entries.
• There are a lot of edge cases in these scenarios, so be vigilant!



Register Convention in RISC-V

• You will be using 
and possibly writing 
functions in this lab.
• Review your notes

on using the stack
pointer and register
convention.

taken from slides V0C



File Templates

• Write your solution in 
hashtable.s.
• Do not rename this file. We 

will be marking this file 
only.
• Function headers and 

incomplete comment 
blocks are provided.



Testing

• Integrated test cases in RARS.
• They do not cover every case!
• playground.s and 

playground_col.s can be used 
to test your functions.



Final Remarks

• Watch the videos on the instruction page!
• You can do the tasks within each part in any order.
• Write your own test cases in the playground files that handle edge 

cases.
• Don’t be afraid to ask questions.
• Review the marksheet to see what cases we are testing for.
• Style marks are an easy 20%.




