Introduction to Hash Table Lab

CMPUT 229

José Nelson Amaral

Lab Requirements

RISC-V
* Function calls and register convention.
* Loading and storing from memory.
General

* Hash tables, key/value stores.

* Hashing.

* Linked Lists.

* Dynamic Memory Allocation.

Overview

Functions

“Number of students enrolled in a course”

CMPUT 229 7 154 Find (aka. Get)

Insert (aka. Add,

Append)

STAT 151 T 98

Delete (aka.
CHEM 101 — 248 Remove)

Hashing Functions

e Calculates the same hash for

each unique input. Some popular hashing algorithms

* Predictable outputs. y—

* Hard to reverse the process.

* Multiple inputs can have the
same hash.

* Pseudorandom.

Hash Table

Key

CMPUT 229

STAT 151

CHEM 101

“Number of students enrolled in a course”

Hash Function

Hash Value

12 248

23 154

98

63

(Singly) Linked Lists

* Two parts: data and pointer to
next item.

* Easy to grow and shrink.

e Don’t need to know the full size
at creation.

* Slower than typical arrays, where
data is right next to each other.

Start of list

Dynamic Memory Allocation

* If you don’t know how much memory you need while you’re writing
the program, you can ask the OS to allocate memory for you
dynamically, or while the program is running.

* Requires you to manage memory in code (needing to allocate and
deallocate/free).

* For part 3 of this lab, you can call the function alloc to provide you
with an area of memory that you can use to grow the list.

Creating a Hash Table in RISC-V

 This lab is split into 3 parts:

Part 2: Implement a Part 3: Implement a
Hash Table Hash Table with Collisions

delete

Part 1: Helper Functions

insert_col

find_col

delete_col

Detailed videos on how each of the algorithms work are embedded on the lab page.

Representing the Entries as an Array

diagram is 1 word
or 4 bytes long.

* In this lab, you are given an array for storing items in the hash table.

* We have to represent a 2D array in memory, which is one dimension.

* The layout is different in part 2 and part 3, so pay attention!

hash=0
hash=1
hash =2

hash=0
hash=1
hash =2

PART 2

hash=0 hash =1 hash =2

—

PART 3
hash=0 hash=1
— I

Part 1

* You will implement the functions hash hash <— seed
and equals.

for every character char in string do

. . . o hash <- ((hash x 33) + char) % 22900
* The hash algorithm is a modified ol o) o

version of djb2, using the seed 5381.

hash <- hash % 64
return hash

e equals checks if 2 strings are equal.

Part 2

* You will implement a hash table (insert, find, delete), with no
collisions.

* You must call functions hash and equals.
* hash is used to calculate the index of the array.

* For find and delete, you must first check that the key in the hash
table matches the key that is given in the function using equals.

* We will not try to insert 2 items with the same name or the same
hash (no collisions).

Part 3

* You will implement a hash table, with collisions
* You must call hash, equals, and alloc.

* Collisions occur when you try to insert two items that have the same
hash.

* We will use a linked list to store overflow (extra) entries. You can call
alloc to allocate room for the overflow entries.

* There are a lot of edge cases in these scenarios, so be vigilant!

Register Convention in RISC-V

« You will be using Register Usage Conventions

and possibly writing m_m

zero The constant value 0

fu nCtionS in th|5 |ab x1 ra Return address Caller
. X2 Sp Stack pointer Callee

° ReVIeW your nOteS X3 gp Global pointer

on using the stack x4 tp Thread pointer
. . xX5-x7 t0-t2 Temporaries Caller
pOI nte r a N d regISte r X8 so/fp Saved register/frame pointer Callee
conve nt 10N. x9 sl Saved register Callee
x10-x11 af-al Function arguments/return values Caller
x12-x17 a2-a7 Function arguments Caller
x18-x27 s2-s11 Saved registers Callee
x28-x31 t3-t6 Temporaries Caller

taken from slides VOC

File Templates

* Write your solution in
hashtable.s.

* Do not rename this file. We

will be marking this file
only.

* Function headers and
incomplete comment
blocks are provided.

hash
Args:
ad: pointer to string

Returns:
afd: hash

Register Usage:
—-—— 1insert your register usage here —-

This function hashes a string using a modified djb2 algorithm.

SHEHRBPHEIBHRIBTHRIPRRHR

Q
0
>

——— insert your solution to part la here —-

ret

——— PART 1B —-

it

equals

This function checks if 2 strings are entirely equal.
#

Args:

a0d: pointer to string 1

al: pointer to string 2

#

Returns:

a0: 1 if both strings are entirely equal, @ if not.
#

Register Usage:

—— 1insert your register usage here —-

#

equals:

—-—— 1insert your solution to part 1b here ——-

ret

Testing

#
playground

This function tests your code and displays a representation of the hash table.
#

* Integrated test cases in RARS. #ares:

ad: pointer to hash table (storearray)
#

* They do not cover every case!l ravgrouna:
save registers

* playground.s and poil 5p, 55, =8

sw ra, 0(sp)

sw s@, 4(sp)

p ayground_CO|.S Can be used mv s@, a@ # the pointer to storearray is stored in s@

to test your fu nctions # —— test your code for part 2 (insert, find, delete) here ——-
——— use the following example to insert a value ——-

mv a0, so
la al, input_1
l'i a?, 154
—- Running tests for part la: hash —- ok i
[X] Great job! : [X] Great job! # restore registers
Ww ra, 0(sp)
. w s, 0(sp)
—— Running tests for part 1b: equals —- addi sp, sp, 8
[] Almost there! : [] Almost there!

ret

Final Remarks

* Watch the videos on the instruction page!
* You can do the tasks within each part in any order.

e Write your own test cases in the playground files that handle edge
cases.

* Don’t be afraid to ask questions.
* Review the marksheet to see what cases we are testing for.
 Style marks are an easy 20%.

CMPUT 229 Laboratory Assignment - Hash Table

Final Mark: /100 MARKS TOTAL
Part 1: / 15 Implementing hash and equals
Part 2: / 25 Implementing hash table, without collisions
Part 3: / 40 Implementing hash table, with collisions
Part 4: / 20 Style
Part 1: Implementing hash and equals
/ 15
/ 10 Hash
/ 5 Equals
/ 2 equal strings

/ 3 non-equal strings

Part 2: Implementing hash table, without

/ 25

/ 6 Insert

/ 9 Find
/ 4 value
/ 3 value
/ 2 value

/ 10 Delete
/ 5 value
/ 3 value
/ 2 value

collisions

exists
does not exist,
does not exist,

exists
does not exist,
does not exist,

same hash not occupied
same hash occupied

same hash not occupied
same hash occupied

Part 3: Implementing hash table, with collisions

/ 40

/ 10 Insert
/ 2 same hash not occupied
/ 3 same hash occupied, without overflow
/ 5 same hash occupied, with overflow

/ 14 Find
/ 1 value does not exist, same hash not occupied
/ 1 value does not exist, same hash occupied, without overflow
/ 2 value does not exist, same hash occupied, with overflow
/ 2 value exists, without overflow
/ 3 value exists, not in overflow
/ 5 value exists, in overflow

/ 16 Delete
/ 1 value does not exist, same hash not occupied
/ 1 value does not exist, same hash occupied, without overflow
/ 2 value does not exist, same hash occupied, with overflow
/ 2 value exists, without overflow
/ 4 value exists, not in overflow
/ 6 value exists, in overflow

Part 4: Style
/ 20

Some common deductions will include: (8 marks per deduction)
No subroutine description
No program header
No explanation for register usage
No block comments
Incorrect submission file name or location in repo

