Introduction to Lab Packet Forward -Checksum

J. Nelson Amaral

Layout of an IP Packet

What is the input to your assignment?

a0: The address of an IPv4 packet stored in memory

What does **checksum** do?

Calculate and return the Header Checksum of an IPv4 Packet

Computing Header Checksum

- 1. Break the packet's header into halfword (16 bit) values
- 2. Accumulator $\leftarrow 0$
- **3.** for each halfword H_i in the header:
 - 1. (CarryOut, Sum) \leftarrow Accumulator + H_i
 - 2. Accumulator ← Sum + Carryout
- 4. Checksum \leftarrow Logical complement of Accumulator

Note: you must skip the Header Checksum field when computing the checksum

0011 0010 1100 1111 ; Accumulator_{i+1}

Important Details

- The standard for packets sent over a network is big-endian
- RISC-V is little-endian.
- Thus, your solution has to:
 - convert each halfword to little-endian before using it to compute the checksum
 - Return the checksum in big-endian byte order ie.
 Do **not** swap the bytes of the calculated checksum before returning the value

Halfword Endianess Conversion (Example)

Little Endian

Big Endian
•

You need to write three functions

- checksum
 - Argument:
 - a0: address of IP packet
 - Returns:
 - a0: calculated checksum, in lower halfword in big-endian byte order.

You need to write three functions

- flipHalfwordBytes
 - Argument:
 - a0: a value
 - Returns:
 - a0: the argument value with the order of two bytes of the lower halfword reversed

You need to write three functions

- getHeaderLength
 - Argument:
 - a0: addres of an IP packet in memory
 - Returns:
 - a0: the value of the packet's *Packet Header Length* field in the lowest four bits