
Lab 4– Checkers
CMPUT 229

Background

Checkers is a two player strategy board game, the name
checkers comes from the checkered board its played on

• Also known as draughts

Checkers Game

Checkers Game – How to Play
The game is setup as shown, black moves first

Players take turns moving one of their pieces

Checkers Game – How to Play
Two types of moves:
• Slide: Move forward 1 square diagonally

– Cannot move to an occupied square
• Jump: Move forward 2 squares diagonally

– Must ‘jump’ over an opposing piece to an
unoccupied square

– The jumped over piece is ‘captured’ and
removed from the board

– A player may make multiple consecutive
jumps with a single piece in one move

Checkers Game – How to Play
Promote ‘Man’ to ‘King’

– When a ‘man’ piece reaches the other side
of the board, it becomes a ‘King’

– Kings are the same as man pieces, but they
can also move backwards

Winning:
– The game is won if at any point the

opponent has no legal moves
– This most commonly occurs by capturing all

of the enemies pieces, leaving your
opponent with no valid moves

Bitboards

0 1 0 0

1 1 1 0

0 0 1 0

0 0 1 0

0100 1110 0010 0010

Bitboards are array data structures commonly
used in computer systems that handle board
games

Each bit in the bitboard corresponds to a single
space on the board

0 1 0 0

1 1 1 0

0 0 1 0

0 0 1 0

0100 1110 0010 0010

Bitboards
Bitboards can be very useful when the number of
spaces we need to track fits in a word or double
word

Bitwise operations, such as AND and OR can be
used on words to build game states or extract
information

Bitboards and CheckersBitboards and Checkers
Notice that there are 64 squares on the board, but
only 32 (the dark squares) are playable squares.

Thus we are able to store one bitboard in a single
32 bit RISC-V word

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

Bitboards and Checkers
Since bitboards only have binary information for
each cell, we are not able to represent a game
state as a single word

For this lab we will have 3 bitboards to represent
the game state
RED, BLACK, KINGS

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

The benefits of bitboards comes from the speed and
simplicity of manipulating entire game states.

For example, suppose we wanna check if cell(s) are
occupied, first create a bitmask with the bits set of
the cells you wish to check
NotOcc = ~(RED | BLACK)

(NotOcc & Cells) ? Occupied : not
Occupied

Bitboards and Checkers

Generating Moves

Generating Jump Moves
Thus we can generate jump moves for a src bb
following this method:
1) Shift src by 4, get cells with enemy
2) Shift the enemy cells by 3 or 5 (using masks)
3) Get the unoccupied cells of those (add to moves)
4) Shift src by 3 or 5 (using masks)
5) Get get cells with enemies
6) Shift those by 4
7) Get the unoccupied cells of those (add to moves)

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

Assume we are generating slide moves for black, (red
is identical, just opposite)

If we left shift the bitboard by 4, it gives us one of the
slide moves for each cell, the blue arrows show this.

To account for the other slide moves, we need to left
shift some squares of the bitboard by 3 (green arrows)
or 5 (red arrows) depending on the position.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

Generating Slide Moves

The bitboard mask representing these squares is
given:
THREE_D = 0xE0E0E0E0 = FIVE_U
FIVE_D = 0x07070707 = THREE_U

Notice that when going the up the board instead of
down the board, the masks for the cells that need to
be shifted three and five are swapped in comparison
with the masks for shifting down.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

Generating Slide Moves

Generating Jump Moves
Along any top-left -> bottom-right
diagonal, values alternate increasing by 4
and 5
Along any top-right -> bottom-left
diagonal, values alternate increasing by 3
and 4
Thus every jump must consist of a shift of
4 and a shift of 3 or 5.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

What about Kings?
You can extract a color’s kings by:
COLOR_BB & KINGS.

Then to generate moves for kings, simply generate
moves in the opposite direction.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

Assignment

checkers Function
This function is the entry point for the
game, it should initialize the starting
position, starting turn, and have the main
game loop.

displayGame Function
This function takes no arguments, and
has no returns, prints the game to the
rars MMIO interface.

This function should print the game
spaces onto the board template
displayed by the ‘displayBoard’ helper
function.

genSlideMoves Function
Takes a bitboard of ‘source’ squares as
an argument, returns a bitboard of all
slide moves from those source squares.

The function will return a 0-bitboard if any
of the source squares are invalid.

genJumpMoves Function
Takes a bitboard of ‘source’ squares as
an argument, returns a bitboard of all
jump moves from those source squares.

The function will return a 0-bitboard if any
of the source squares are invalid.

makeMove Function
Takes a source bitboard (a0) and
destination bitboard (a1).

This function performs a move and
modifies bitboards without validation.

In the case of a jump, remember to
remove ‘capture’ the opposing piece
jumped over.

doTurn Function
Takes a pointer to the head of moves
array terminated with a sentinel of (-1).

Checks if all the moves in moves array
are valid moves, executing all the moves
if they are valid, or doing nothing if the
moves are not valid.

handler Function
The handler processes interrupts and
exceptions. The handler must preserve
all registers, including ‘t’ registers.

The End

	Lab 2– Hosoya’s Triangle
	Background
	Hosoya’s Triangle
	Slide 4
	Slide 5
	Slide 6
	Fibonacci Sequence
	Slide 8
	How to Calculate Fibonacci Sequence
	Slide 10
	Slide 11
	Triangle Structure
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	The End

