Lab 4: Dungeon Crawler

Game Overview

:" Keyboard and Display MMIO Simulator, Version 1.4

Keyboard and Display MMIO Simulator

DISPLAY: Store to Transmitter Data 0xffff000c, cursor (3,10), area 95 x 22

FRfddddiRddiRididiiidiiiRRRRiRiditiie
$RPE223 0000000000080 88 ¢
FRRdddRiiiRRidRaiRiiiiRiidiniii

FRffdddiaaiaaian L 13444224
fhddididiiiiiiing iididd
(32222221 $Riddddd 9 13224234

#hiddddd L fhdiided d#iie Ll
(iii2222] L #3#ddddd ##3¢ L #ddidsd

(ALt] FREREEEE Hide dhideed
F#dd38d L #fddedd e L #edeed
#40 $4id

(33222244 12344 ##éd

FRERERRREERE00EE RRRRRRINR MRdedeedd
FREFERERRERREIEE FRRRERREIL deddeiEe
SRR848 L #0000 000000040
FRRbiERRRERRREE FRdRRRRRRRRIRRRRAER
$R4RER 8000000000804
HP: 3

DAD |Fixed transmitter delay, select using slider

tions

l - I Di%lenom: 5 instruction execu

Legend

#: Dungeon Wall
L: Loot
E

eiver Data 0

Program Arguments

Tt St o

Program Arguments: |C:\Users\Example\229labs\lab4\smalldungeon.txt

Bkpt Address Code

] 0x00400000 0x00b004:

This is one of the input files provided to you:

smalldungeon.txt:

Player start position: # Path vectors: # Loot positions:
1,1 1,1 6,1 3,1

1,262 6,9
Player finish position: 57117 12,3
16,8 5,8 16,8 13,4

) 5,9:11,9

Max dungeon coordinates: 5,3 5,6 # Enemy Positions:
16,10 6,3 6,6 3.2

11,3 11,6 5,4
Number of path vectors: 12.3:42.7 6,4
11 13,3 13,5 7,7

14,3 14,5 11,4

Number of loot:
4

Number of Enemies:
5

The input file defines a unique dungeon configuration

smalldungeon.txt:

Player start position: # Loot iti SRR RARARR NS
* # Path vectors: oot positions:
) 2.4 54 3,1 $8 L #esdssssds
1,2 6,2 6,9 3 TITTITITY
Player finish position: 557 117 12,3 33333 2333 L i3
16,8
; et a $3888 #888 L 84
Max dungeon coordinates: 513 5)% # Enemy Positions: $$434 #4434 $$
19230 6,3 6,6 22 TITTR T Y
11,3 11,6 ’ —
Number of path vectors: 12.3:42.7 6,4 tiidd t#éd
= 13,3 13,5 7.7 $3343
14,3 14,5 11,4 $###¢ L 23334
ik PTTTTTITPIRPPren
Number of Enemies:
5

Building the Dungeon

The provided common.s script parses the input file provided as a program
argument into three designated arrays and some global variables:

Arrays: Global Variables:
1. Paths Array 1. PLAYER X
2. Loot Array 2. PLAYER Y
3. Enemies Array 3. MAX X -
4. MAX'Y
5. FINISH_ X
6. FINISH Y

Paths Array

The paths array is an array of path “structs”. Each path struct contains four
32-bit integers that represent the start and end coordinates of a path: start x,

starty, end x, end y.

A path can be imagined as this C struct

Paths Array

smalldungeon.txt:

Path vectors:

: 555 |

- - -

= = O VNN e

6,1
6,2

11

Start x

Starty

End x

Endy

Start x

Starty

End x

Endy

W 00N O O; & W N = O

[
(=)

0/2|2]|3|4|5|6|7|8|9|10/11|/12/13/14/15/16

Blue: Horizontal paths
Yellow: Vertical paths

Green: Finish point

11

Start x

Starty

End x

Endy

Start x

Starty

End x

Endy

Loot Array

The loot array is an array of loot “structs”. Each loot struct contains two 32-bit
integers that represent the coordinates of a loot item.

Loot can be imagined as this C struct.

Loot Array

smalldungeon.txt:

Loot positions:

3,1
L_6,9 —
12,3
13,4
3 1 6
X y X

W 0N OO & W N = O

[
(=]

0|12]2|3|4/5|6|7|8|9|10/11|12/13/14/15/16

Enemies Array

The enemies array is an array of enemy “structs”. Each enemy struct contains
two 32-bit integers that represent the coordinates of an enemy.

An enemy can be imagined as this C struct.

Enemies Array

smalldungeon.txt:

Enemy Positions:

2
.

N B RIN

3
5
6,
7
1

S
1,4

W 0N OO & W N = O

[
(=]

0/1/2 3 4567 8|/9/1011/1213 141516

—

Representing the Dungeon Map as a 2D Array

Your program must use the data in the paths, loot, and enemy arrays to
construct a 2D representation of the dungeon map.

Four pointers will be provided to your program’s primary function:

Pointer to the paths array
Pointer to the loot array
Pointer to the enemies array

Pointer to an empty array used to store the 2D representation of the
dungeon

s~

Representing the Dungeon Map as a 2D Array

0/12(2|/3|4/5|/6|7/8)|9|10/21/12/13/14:15/16

@ L

E

W 00N O O; A W N » O

[
[=]

[0000000000000000000O0
01121110000000000000
01131110000000000000...]

0/2/2|/3/4|5|6(7!8|9(10/11/12/13{14/15/16|

[00000000000000000000

@ L

= 01121110000000000000

01131110000000000000...]

W ONOOOMAMWNRERO

[
[=)

Each element of the 2D array is a 32-bit integer:

0 = Dungeon wall
1 = Path
2 = Loot

3 = Hidden enemy
4 = Shown enemy

Provided Global Variables

PLAYER_ X: Current x coordinate of the agent
PLAYER_Y: Current y coordinate of the agent

MAX X: Maximum x coordinate of the map

MAX_Y: Maximum y coordinate of the map

FINISH_X: x coordinate of the exit point of the dungeon

FINISH_Y: y coordinate of the exit point of the dungeon

Gameplay Details

Timer

The game starts with 5 seconds on the timer. The timer decreases by 1 each
second, implemented using timer interrupts.

If the timer reaches 0, the game will stop and you will lose.

Movement

The w,a,s,d keys are used to move the agent around the dungeon, implemented
using keyboard interrupts.

The agent is only able to move along paths.

Encountering Loot

When your agent moves to a
position that contains loot, 5
seconds are added to the timer and
the loot is removed from the map.

gfidddddiiditieee

$€ L
£

2222
$iied
2322
$iidd
2222
2222
giidd

S22 222
fiediddeed
$8d¢ L #4
$28¢ L #¢
323 ##
$#8% 444

322

L 2223

3222222222222 2 22

HP: 3

Health Points

Your agent starts the game with 3 health points. Encountering enemies causes
your agent to lose health points.

If your agent’s health points reach 0, the game stops and you lose.

Encountering an enemy

Enemies are hidden until the agent
encounters them.

When your agent moves to a
position that contains an enemy, it
will be unable to move until you
press the spacebar to attack.

fRidiiiiidisi

#€ L
$

$iidsd
$iidd
$2idd
tiédd
$iidd
12222

$###¢ L

fidddiieie
22222222,
888 L #¢
88 L #¢
$#dd ##
tiéd #idd

g#dd

2222

fRidiiiiddiisi e

HP: 3

05

Font

lv] DAD

Fixed transn

“KEYBOARD

Encountering an enemy

Your agent’s health points decrease
by 1 for each second that your agent
is next to an enemy.

fRidiiiiidisi

#€ L
$

$iidsd
$iidd
$2idd
tiédd
$iidd
(3222

$###¢ L

fidddiieie
22222222,
g#ds L #¢
88 L #¢
222 ##
tiéd #idd

g#dd

2222

fRidiiiiddiisi e

—» HP: 3

05

Font

lv] DAD

Fixed transn

“KEYBOARD

Win Conditions

To win the game, the following conditions must be true:

N~

Your agent must reach the dungeon exit
There must be time remaining on the timer
The agent must have at least 1 health point remaining

All loot must be collected

322251
$# L

$ @
122224
123427
132224
122224
122224
122224
$###2 L
2322224
HP: 1

iS22 2224
fRifdesed
333222228
###¢ L #¢#
###¢ L ##
1522 ##
$##d #i##

334

132224
233222228

Exit represented by a
hole in the dungeon wall

Interrupts

Interrupts

The timer, player movement, and attack elements use external interrupts from
hardware.

e The rars timer tool is used to simulate RISC-V timing functionality, and is
necessary for timer interrupts in this lab.

e The rars keyboard and display MMIO simulator simulates printing to an
external display device, and is necessary for keyboard interrupts in this lab.

1

Required RARS Tools

Instruction Statistics
Instruction/Memory Dump
Memory Reference Visualization

Keyboard and Display MMIO Simulator

{

é\g

Keyboard and Display MMIO Simulator
DISPLAY: Store to Transmitter Data 0xffff000c, cursor 0, area 95 x 6

l Font I DAD |Fixed transmitter delay, select using slider | v I Dezl%lengtn: 5instruction execunonls

KEYBOARD: Characters typed here are stored to Receiver Data Oxffff0004

Instruction Counter

\ wler\Public
4 Bitmap Display
1 BHT Simulator
Dooo
‘| Floating Point Representation h0o4
| Data Cache Simulator noos
| Timer Tool p00c
I UXOOZo0010

Tool Control

| Connect to Program Close

N
N

[«E Timer Tool, Version 1.0 (Zachary Selk)

Timer Tool

00:00.00 | Play Pause

Tool Control

Connect to Program Reset Help Close

Required RARS Tools

Instruction Statistics

{

é\g

4 Instruction/Memory Dump
i Memory Reference Visualization
4 Keyboard and Display MMIO Simulator
\ Instruction Counter rv—l erPublit
4 Bitmap Display
1 BHT Simulator
Dooo

‘| Floating Point Representation h0o4
: Data Cache Simulator n00s
| Timer Tool p00c

T UXOUZU0010

Keyboard and Display MMIO Simulator
DISPLAY: Store to Transmitter Data 0xffff000c, cursor 0, area 95 x 6

l Font I DAD |Fixed transmitter delay, select using slider | v I Dezl%lengtn: 5instruction execunonls

KEYBOARD: Characters typed here are stored to Receiver Data Oxffff0004

Tool Control

| Connect to Program Close

N
N

[«E Timer Tool, Version 1.0 (Zachary Selk)

Timer Tool

00:00.00/| Play Pause

Tool Control

Connect to Program Reset Help Close

Enabling Interrupts using Control and Status Registers

. 0: User interrupts disabled
Status Register (UStatus): 1: User interrupts enabled \
(%)

\

1: Enable External Keyboard Interrupt

8 4
i
%

Interrupt-enable register(uie):

2

/

Keyboard and timer interrupts are both user interrupts. The bits above need to be set to
keyboard and timer interrupts.

1: Enable External Timer Interrupt

Interrupts

When an enabled interrupt is raised (such as the player pressing the “w” key), the
program is paused and execution is transferred to the interrupt handler.

You will write a custom interrupt handler to handle keyboard and timer interrupts.

To use your custom handler, the address of your handler must be stored in the
utvec CSR (CSR #5).

Global flags

Setting global variable flags within your handler can signal to your main game loop
what interrupt occurred. The main game loop can then update the game state
accordingly after your program exits the handler.

|

v

Did an interrupt occur?

Interrupt we care about?

Example Gameflow ly

Update game state
and redraw.

I

Should the game end?

i Yes

Exit

Ucause

e The ucause register contains the current exception/interrupt that is raised.
Note the 31st bit in the ucause register indicates if it was an exception or an

interrupt.
31 30-0
|
| v
0: Exceptions Exception Code

1: interrupts

Memory-Mapped 10

Memory-Mapped 10

Memory-mapped IO allows interaction with external devices through an interface

pretending to be system memory. This mapping allows the processor to
communicate with these devices using the load-word and store-word instructions.

In this lab, keyboard, time, and display I/O registers are important.

Keyboard Interrupts and MMIO Registers

Register Name

Keyboard control

Keyboard data

Memory Address

OxFFFFO000

OxFFFF0004

Description

For keyboard interrupts to
be enabled, bit 1 of this
register must be set to 1;
after the keyboard interrupt
occurs, this bit is
automatically reset to 0.

The ASCII value of the last
key pressed is stored here.

Time Interrupts and MMIO Registers

Register Name Memory Address Description

Time OxFFFF0018 This is a read-only register
that holds the time since the
program has started in
milliseconds.

Timecmp OxFFFF0020 User-specified value. When
less than or equal to the
value in the Time register
an interrupt is generated.
Writing to this register is
required to set up a timer.

Printing to MMIO Display using MMIO Registers

Register Name

Display control

Display data

Memory Address

OxFFFFO008

OxFFFFO00C

Description

Bit O of this register
indicates whether the
processor can write to the
display. While this bitis O
the processor cannot write
to the display. Thus, the
program must wait until this
bit is 1.

When a character is placed
into this register, given that
the display control ready bit
(bit 0) is 1, that character is
drawn onto the display.

Note that direct communication to the display via the Display Data register has
been implemented for you in the provided printChar and printStr functions.

Register Name Memory Address Description

Display control OxFFFFOO008 Bit O of this register
indicates whether the
processor can write to the
display. While this bitis O
the processor cannot write
to the display. Thus, the
program must wait until this
bit is 1.

Display data OxFFFFO00C When a character is placed
into this register, given that
the display control ready bit
(bit 0) is 1, that character is
drawn onto the display.

Functions to implement in dungeon.s

dungeon:

This function is the entry point of the game and it executes the main
gameplay loop.

handler:

This handler will catch and handle keyboard and timer interrupts.

buildPaths

This function adds the in-memory representation of the path positions in a 2D
array of 32-bit integers.

W 0N OO O; A W N » O

[
[=]

0/1/2|3|4|5|6|7|8|9[10/11/12/13/14 /15|16

[00000000000000000000

0
0

111111
111111

0000000000000
0000000000000...]

buildLootOrEnemies

This function adds the loot or hidden enemies (depending on the input arguments)
to the 2D representation of the dungeon array.

W 0N OO O; A W N » O

[
[=]

0/1/2|3|4|5|6|7|8|9[10/11/12/13/14 /15|16

[00000000000000000000

011
011

2
3

1110000000000000
1110000000000000...]

displayDungeon

This function handles the logic to print the map to the MMIO display.

2D dungeon array. pesiiiisiiieiseg
$€ L 33222232 37
[00000000000000000000 o

##8¢ #8482 L ##
$#idd #i#4 ##

01121110000000000000 — 448 HEE 4

123224 322

01131110000000000000...] s

1332222222222 222,
HP: 3 05

getDestination

This function returns what type of element is located at a given x,y point in the 2D
representation of the map array.

2D dungeon array:

[000000000000

0111110000000000000

Getx=3,y=1

01131110000000000000...]

replacePoint

This function replaces the value at a given x,y point in the 2D representation of the
map array with a new value.

2D dungeon array:

[000000000000

0111110000000000000

Setx =3, y=1topath

01131110000000000000...]

Functions provided to you in dungeon.s

printStr

Prints a string to the Keyboard and Display MMIO Simulator terminal at the x,y
coordinates provided as arguments.

printChar:

Prints a single character to the Keyboard and Display MMIO Simulator terminal at
the x,y coordinates provided as arguments.

intToStr:

Converts at most a two digit integer into its ascii equivalent.

Testing your solution

Test dungeons

Three test dungeon inputs are provided to you:
smalldungeon.txt
mediumdungeon.txt

largedungeon.txt

smalldungeon.txt

‘ol1/2/3/als|6e!7/8]9/10/11/12/23/14/15/16

W O N O U WN = O

[
(=]

mediumdungeon.txt

0123 456 7 8 9101112131415 1617 1819 20 21 22 2324

© 00 N O LA WN = O

largedungeon.txt

0 1 2 3 45 6 7 8 910111213 14151617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

0
1
2
=
4
5
6
7
8
9

o S i =
O VA WN RO

Hints

e Implementing the handler with timer and keyboard interrupts that work
correctly will likely take longer than you would expect. Debugging can be
tricky. It is highly recommended to start this lab early!

