
Lab #4: Game of Life Bits

CMPUT 229



Background

CMPUT 229



Overview

Simulating the Game of Life
In this lab you will write an interactive simulator for Conway’s Game of Life.

Output will be performed using the MMIO terminal display in RARS.

The simulation will use RISC-V’s interrupt handling facilities for keyboard input and 
timing.



Conway’s Game of Life

Conway’s Game of Life
A simulation that follows the evolution of a square grid of cells.

Each cell can be either living or dead.

Each step of the simulation, every cell is updated according to a set of rules.

Simulation Rules
A living cell that has less than two living neighbours dies.

A living cell that has more than three living neighbours dies.

A dead cell that has exactly three living neighbours becomes alive.

Otherwise, the cell’s state doesn’t change.



Example simulaiton:

These simple rules can lead to complex behaviour:



Interactive Simulator

Operation of the Simulator
The simulator will display a grid of cells and a cursor.

The user can control the simulation, and cause the simulation to update.

The simulation can be moved to a “running” state, where it steps automatically.



Controling the Simulator

Interacting with the Simulator
Keyboard controls are used to interact with the simulator.

The cursor can be moved up, down, left, and right with the w, s, a, and d keys.

The cell that the cursor is on can be set to the living state with the j key, and set to the 
dead state with the k key.

A single step of the simulation can be performed using the space key.

The state of the simulator can be switched between the “paused” and “running” states by 
pressing the t key.

Pressing the q key exits the simulator.



Interrupts

Interrupts
The simulator uses interrupts to interact with the hardware and external devices.

Specifically, the simulator uses timer and keyboard interrupts.

When an interrupt occurs (say a key press) the interrupt handler is called.

Control and Status Registers
RISC-V uses “control and status” registers to configure interrupts.

Interrupts are disabled by default in RARS, so they must be enabled using these registers.

The address of the interrupt handler must also be set.

Refer to the website for specific information on which registers to use and how to use 
them.

The interrupt handler must deal with the interrupt, then return control back to the running 
program.



RARS Keyboard & Timer Tools

Keyboard & Display Tool
Found under the “Keyboard and Display MMIO Simualtor” tab under the “Tools” menu in 
RARS.

After assembling your program, click the “Connect To Program” button.

If you resize your terminal, click the “Reset” button.

Timer Tool
Found under the “Timer Tool” tab under the “Tools” menu.

Press “Connect To Program” to connect the timer to your assembled program.



MMIO

Memory-Mapped IO
Memory-mapped IO allows interaction with external devices through an interface 
“pretending” to be system memory.

We can communicate with such devices using regular memory instructions.

Both the Keyboard / Display and the Timer tools use MMIO.

A list of the addresses of all MMIO registers can be found on the website.



Keyboard & Display MMIO

Keyboard MMIO Registers
Keyboard Control: Enables keyboard interrupts.

Keyboard Data: Contains the ASCII value of the last keypress.

Display MMIO Registers
Display Control: Indicates whether or not the display can be written to.

Display Data: When a character is stored here and the display is ready, the character is 
written to the display.



Timer MMIO

Timer MMIO Registers
Time: Contains the time given in the timer tool. Stored in milliseconds.

Timecmp: When the value in this register is less than or equal to the value in the Time 
register, a timer interrupt occurs.



Writing an Interrupt Handler

Writing an Interrupt Handler
An interrupt handler is similar to a regular function.

The interrupt handler is run during the execution of the program. Thus the interrupt 
handler cannot appear to change any of the registers.

Registers cannot be saved to the stack, since the stack pointer may be corrupted. For 
example, consider an exception thrown for a missaligned load using the stack pointer.

The uscratch register contains a pointer to memory that can be used by the handler.

This memory can be used to store the original values of registers that are used by the 
interrupt handler.



Simulator

CMPUT 229



Game of Life Simulator

Input to the Simulator
The inital state of the cell grid is given by the input file.

This file is parsed and given to your solution as a cell grid buffer.

Stepping the Simulator
At each step of the simulation, the cells in the grid are updated according to the Game of 
Life rules.

We cannot use a single cell grid, since if we update the cells in place, the neighbour 
counts may change during the update.

This may cause the simulation to compute the next state incorrectly.

To solve this issue, we can use two buffers. One buffer contains the current state. During 
the simulation step, the results are written to the second buffer.



Cell Grids

Format of the Cell Grid
The state of the simulation is stored in a byte array, referred to as a “grid”.

The bit 0 represents a dead cell, while living cells are represented by the bit 1.



Cell Grids in Memory

How are Cell Grids Stored?
Cell grids are stored in row-major order.

This grid:

Address Binary Value Hexadecimal

0x10001000 000000102 0x02

0x10001001 010001002 0x44

0x10001002 000001112 0x07

0x10001003 000000002 0x00

0x10001004 001001002 0x24

0x10001005 001000012 0x21

0x10001006 001000102 0x22

0x10001007 000000102 0x02

Memory layout:



Wrapping the Grid

How Wrapping Works
When travelling off the edge of the simulation grid, the simulation wraps around to the 
opposite edge.

Any point (x, y) can be mapped to a grid with r rows and c columns using the following 
formula:

(x mod c, y mod r)

However, in this lab, we are only concerned with cells that are in the grid, or are one cell 
outside (including the corners).

Your solution only needs to handle these cases.



Printing to the Display

Printing to the MMIO Diplay:
The MMIO display cannot be printed to using ecall.

Instead, we provide the printCell function, which can print a single character to a given 
row and column of the display.

The characters to use for living cells, dead cells, and the cursor are given in the 
ALIVE_CHAR, DEAD_CHAR, and CURSOR_CHAR variables, respectively.



printCell

a0: Character to print as an ASCII byte.

N/A

Parameters:

Return Value:

Print a character to the MMIO text terminal at (row, col).
Description:

a1: Row to print the character at.

a2: Column to print the character at.



Timing

How Timing Works:
When the simulator is in the “running” state, an iteration of the simulation is performed 
once per second.

The timer must be reset before beginning to update the simulation.

Otherwise, the time between updates may be more than one second.



Controlling the Simulator

Simulation Controls:
w Move the cursor up one character, wrapping if needed. Then update the display.

s Move the cursor down one character, wrapping if needed. Then update the display.

a Move the cursor left one character, wrapping if needed. Then update the display.

d Move the cursor right one character, wrapping if needed. Then update the display.

j Set the cell at the cursor to the living state, then update the display.

k Set the cell at the cursor to the dead state, then update the display.

t Toggle the simulation between the “running” and “paused” states.

space Step the simulation and update the display. Only works when in the “paused” state.

q Exit the simulation.



Flow of the simulator



Assignment

CMPUT 229



Overview of the lab

Overview:
In this lab, you must implement a series of funtions to create a simulator for 
the Game of Life.
You are required to implement all of the following functions.



gameOfLife

a0: Number of rows in the grid.

N/A

Parameters:

Return Value:

Entry point for the Game of Life simulator.
Description:

a1: Number of columns in the grid.

a2: Pointer to grid buffer A (Initializied with the input state).

a3: Pointer to grid buffer B.



displayGrid

a0: Number of rows in the grid.

N/A

Parameters:

Return Value:

Display the given Game of Life grid to the MMIO terminal.
Description:

a1: Number of columns in the grid.

a2: Pointer to grid buffer to display.



updateGrid

a0: Number of rows in the grid.

N/A

Parameters:

Return Value:

Perform a single Game of Life simulation step. Reads from one 
buffer and writes the result to another.

Description:

a1: Number of columns in the grid.

a2: Pointer to the input grid buffer.

a3: Pointer to the output grid buffer.



getCell

a0: Number of rows.

a0: Value of the cell.

Parameters:

Return Value:

Get the value of a given cell. If the location is out of bounds, 
wrap around.

Description:

a1: Number of columns.

a2: Row of the cell.

a3: Column of the cell.

a4: Pointer to the grid buffer.



setCell

a0: Number of rows.

N/A

Parameters:

Return Value:

Set the value of a given cell. If the location is out of bounds, 
wrap around.

Description:

a1: Number of columns.

a2: Row of the cell.

a3: Column of the cell.

a4: Pointer to the grid buffer.

a5: New value of the cell.



handler

N/A

N/A

Parameters:

Return Value:

Interrupt handler for the Game of Life simulator.
Description:



Testing

CMPUT 229



Testing your Solution
Included tests:

We have provided some inputs for you to test your solution with.

These inputs are stored in the “Tests” directory as *.txt files.

Format of the test file:
Make sure the test file has the correct format (refer to the website).

RARS may need the full path to the test file.


	Lab #4: Game of Life Bits
	Background
	Overview
	Conway’s Game of Life
	Example simulaiton:
	Interactive Simulator
	Controling the Simulator
	Interrupts
	RARS Keyboard & Timer Tools
	MMIO
	Keyboard & Display MMIO
	Timer MMIO
	Writing an Interrupt Handler
	Simulator
	Game of Life Simulator
	Cell Grids
	Cell Grids in Memory
	Wrapping the Grid
	Printing to the Display
	Slide 20
	Timing
	Controlling the Simulator
	Flow of the simulator
	Assignment
	Overview of the lab
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Testing
	Slide 33

