
Introduction to Lab Maze 
Game

José Nelson Amaral 



Maze Games



Two Screens

● Preparation Screen:
○ Reads the level of the game

● Game Screen:
○ Displays the maze
○ Player can move around by pressing using WASD.
○ Time remaining





Exceptions/Interruptions

● Enable interrupts for both the timer and the keyboard
● Create an exception handler 



Enable Interrupts

● Keyboard:
○ Keyboard Control (0xFFFF0000): Bit 1 of must be 1 for the keyboard to be enabled 

■ Must be re-enabled after every keyboard interrupt
○ Keyboard Data (x0xFFFF0004): Contains the ASCII character after a key is pressed 

● Timer: 
○ Timer (0x0xFFFF0018): Contains the current time
○ TimeCMP (0xFFFF0020): User-specified value. When matched by the timer an interrupt is 

generated
● Interruption Control:

○ ustatus register (CSR#0): bit 0 must be set to 1 for user interrupts to be allowed.
○ uie register (CSR#4): Bits 4 and 8 must be 1 in order to enable keyboard and timer interrupts.



Saving Registers

An interrupt handler must save all the registers that it uses.

● The label iTrapData designates a section of memory allocated for saving 
registers in the handler.

● Outside of the handler, uscratch (CSR #64) should contain the address of the 
iTrapData section.

● Use the cssrw instruction to swap a register with the uscratch and save all the 
required registers.



Exception Handler

The maze.s already contains the Handler Terminate section

The common.s file will already have the iTrapData section 



Wall Structs
• Encodes the information regrading the walls 

in the maze
• Can be thought of as a C struct like the one 

given on the left.
• You will be given an array of these structs 

one for each wall in the maze.
• Each struct will be laid out in the memory 

as:

Example the following is an array with 2 walls:

Check the lab specification page for explanatory videos.



Game Loop


