
Lab 4

CMPUT 229

University of Alberta

CMPUT 229 (University of Alberta) Lab 4 1 / 14

Outline

1 Lab 4 Assignment
Memory-Mapped I/O
Polling
Interrupts
Interrupt Handling
Questions

CMPUT 229 (University of Alberta) Lab 4 2 / 14

Lab 4 Assignment

The Assignment: A Countdown Timer

You will implement 6 sychronized countdown timers in RISC-V.

This will consist of a main program, as well as an interrupt handler.

The timers will be driven by timer interrupts and displayed using
memory-mapped output.

Any timer can be set with a specific amount of time, at any time from
an input in the form of seconds@timer.
The remaining time will be displayed as mm:ss starting at the
corresponding time entered by user, or 00:00 which is the default state
of the timer.
You do not need to handle anything beyond 59:59, i.e. 3599 seconds.

The timer will be controlled by the keyboard, using memory-mapped
input.

After entering a number and desired timer, [ENTER] starts the timer.
q pressed at any time terminates the program.

CMPUT 229 (University of Alberta) Lab 4 3 / 14

Lab 4 Assignment Memory-Mapped I/O

Memory-Mapped I/O

Control and data registers for the keyboard and display live at
memory addresses outside of the real memory range.

Keyboard control at 0xFFFF 0000.
Keyboard data at 0xFFFF 0004.
Display control at 0xFFFF 0008.
Display data at 0xFFFF 000C.

Run RARS simulator with the Keyboard and Display MMIO

Simulator tool and the Timer Tool, connect them to enable them.

Use lw and sw to access and modify them, just like you would with
normal memory locations

CMPUT 229 (University of Alberta) Lab 4 4 / 14

Lab 4 Assignment Polling

Output Using Polling

To write data to the display, we have to wait for it to become ready,
then print a character. We poll the control register, then write data
to the register.

To write a string, we have to do this for every character.

CMPUT 229 (University of Alberta) Lab 4 5 / 14

Lab 4 Assignment Polling

Output Using Polling

.data

str:

.asciz "Hi."

.text

main: la t0, str

loop: lb t1, 0(t0)

beqz t1, done

poll: lw t2, 0xFFFF0008

beqz t2, poll

li t3, 0xFFFF000C

sw t1, 0(t3)

addi t0, t0, 1

j loop

done:

jr ra, 0

CMPUT 229 (University of Alberta) Lab 4 6 / 14

Lab 4 Assignment Interrupts

Keyboard Input with Interrupts

You must enable the keyboard using its control register.

When there is a character read from the keyboard, you will get an
interrupt (we’ll discuss interrupts later).

Then you can read the character from its data register.

CMPUT 229 (University of Alberta) Lab 4 7 / 14

Lab 4 Assignment Interrupts

Keyboard Input with Interrupts

Enable keyboard interrupts

main: lw t0, 0xFFFF0000

ori t0 t0, 0x02

sw t0, 0xFFFF0000

In the exception handler check the keyboard

status

csrrc t0, 66, t1

li t1, 0x7FFFFFFF

and t0, t0, t1

bnez t0, nkeyboard

... ...
nkeyboard: lw a0, 0xFFFF0004

CMPUT 229 (University of Alberta) Lab 4 8 / 14

Lab 4 Assignment Interrupts

Interrupts

Interrupts (also called exceptions) are events that invoke the interrupt
handler code.

Interrupts can be generated in response to external events (e.g.
keypresses on the keyboard), by errors in code (e.g. arithmetic
overfow or misaligned loads), or by software itself.

The addresss of the interrupt handler in RISC-V resides in the utvec
register, store the address of your handler to the utvec register at the
start of your progam.

RISC-V uses Control and Status Registers to generate and handle
interrupts. There are a number of these registers that you can access
using the csrr instructions.

CMPUT 229 (University of Alberta) Lab 4 9 / 14

Lab 4 Assignment Interrupts

A Basic Interrupt Handler (1)

In the handler, you have to store the registers in the stack before
using them (even the temporary registers).

ucause (66) in CSR is the cause register. ustatus (0) in CSR is
the status register. We get them with cssr instructions.

The exception code is in the ucause CSR

We reload registers used from stack so that the user code doesn’t
know the exception has happened.

The uret instruction returns control to the user code at the point
where the exception was thrown.

CMPUT 229 (University of Alberta) Lab 4 10 / 14

Lab 4 Assignment Interrupts

A Basic Interrupt Handler (2)

handler: addi sp, sp, -8 # Store registers

sw a0, 0(sp)

sw a7, 4(sp)

csrrc a0, 66, zero # Get the exception code

li a7, 34

ecall # Print it

lw a0, 0(sp)

lw a7, 4(sp)

addi sp, sp, 8 # Reload registers

uret # Return control to user

CMPUT 229 (University of Alberta) Lab 4 11 / 14

Lab 4 Assignment Interrupts

The Timer

RARS provides a timer mechanism that triggers an interrupt at a
spceified time.

Specifically, this involves two addresses used by the timer hart: Time
at 0xFFFF0018 and TimeCmp at 0xFFFF0020.

value in 0xFFFF0018 increments by 1 automatically every 1
millisecond.

An interrupt is raised when the values at the two addresses are equal
(or when Time is greater than TimeCmp).

This means if you want an interrupt in 1000 milliseconds (1 sec), you
should set the value at address 0xFFFF0020 to the current value in
0xFFFF0018 plus 1000.

CMPUT 229 (University of Alberta) Lab 4 12 / 14

Lab 4 Assignment Interrupts

Things to Remember

The marksheet has been posted. Look at the items that will be
evaluated carefully.

You can write your solution any way you like, but following the
method outlined in class is probably a good way to go.

The usual: your code should be formatted accordingly, no late
submissions, and make sure it runs on the lab machines.

CMPUT 229 (University of Alberta) Lab 4 13 / 14

Lab 4 Assignment Questions

Lab 4 Questions?

CMPUT 229 (University of Alberta) Lab 4 14 / 14

	Lab 4 Assignment
	Memory-Mapped I/O
	Polling
	Interrupts
	Interrupt Handling
	Questions

