CMPUT 229

Lab #5: Control Flow Graph

What is a Control Flow Graph?

A Control Flow Graph (CFG) shows all the possible execution paths of a program.

Basic Blocks

sample_function:

The nodes of a CFG are basic blocks. addi 10, zero, 10
addi t1, zero, 0
blt t0, zero, loop

A basic block is a segment of code where instructions

execute in order from start to finish. addi t1, zero, -1
j exit
Once execution enters a block, all instructions in the loop:
block must be executed. add t1,t1,t0

addi 10, t0, -1
bgt 10, zero, loop

Only the first instruction of a basic block can be the
target for a branch or jump instruction.

Edges

Edges denote directed control flow between basic
blocks.

There are two types of edges:
- forward edge
- back edge.

Branches and jumps redirect control flow, creating
multiple execution paths within a program.

Forward Edge

#BO

_sample_function:
addi t0, zero, 10
addi t1,zero, 0
blt t0, zero, loop

\ 4

#B1
addi t1, zero, -1
j exit

B2

loop:
add
addi

bgt

t1,t1,t0
10, t0, -1
t0, zero, loop

Back Edge

Successors & Predecessors

A successor of a block Bi is any block that can be

reached from Bi.
Immediate successors of BO

An immediate successor of a block Bi directly follows
Bi.

The concepts of predecessor and immediate
predecessor are analogous.

Successors of BO

Forward Edge %‘\
#B2

addi t0, zero, 10
addi t1, zero, 0
blt t0, zero, loop

Basic Block

_sample_function:

t0, zero, 10
1, zero, 0
t0 , zero, loop

#B1
addi
j

loop:

add t1,11,t0
addi 10, t0, -1
bgt t0, zero, loop

L

Basic Block

.
/

B0

addi
addi
blt

_sample_function:

t0, zero, 10
1, zero, 0
t0 , zero, loop

=—/

t1, zero, -1

exit

#B2
loop:

add t1,t1,10
addi 10,10, -1

bgt 10, zero, loop

L

#B3

exit:
mv
ret

a0, t1

Back Edge

cessors & Predecessors

k Bi is any block that can be

BO

addi t0, zero, 10
addi t1, zero, 0
blt tO, zero, loop

sor of a block Bi directly follows

Immediate successors of BO v
B1

J exit

addi t1, zero, -1

~Sa

The concepts of predecessor and immediate

predecessor are analogous.

Successors of BO

Lab #5: Control Flow Graph

Assignment

Overview

Goal: to generate control flow information for a single function.

These functions will populate data structures that represent control flow constructs:

- basic blocks, edges, successors, and predecessors.

Each function’s implementation should accurately populate these custom data structures.

The common.s file initializes the data structures and runs tests on your implementation.
It also helps to parse the populated data structures.

Overview

« Goal: generate control flow information for a single function.

« Task: write functions that populate data structures that represent control flow constructs:
— Basic blocks
— Edges
— Successors

— Predecessors
 Resources: the common.s file:
— initializes the data structures

— runs tests on your implementation

— helps to parse the populated data structures.

A Sample Input Function

The _basicblocks function below serves as an example of an intended input for the lab.
It will be used as a reference to explain the custom data structures.

_basicblocks:
mv t0, zero
mv tl, zero
a0, done

t2, t0, 1
t2, labell
add tl, tl1, tO

j label2

labell:
addi tl, t1, 1

label2:
addi t0, t0, 1
bgt a0, t0, loop

Basic Block Leaders

Basic-block leaders:

The first statement in a function

Any statement that is the target of a
branch/jump

Any statement that immediately follows a branch
or jump

Leader

Leader

Leader

Leader

_basicblocks:

mv
mv
blez

loop:

t0, zero
tl, zero
a0, done

andi t2, t0, 1
bnez t2, labell
add t1, t1, tO
j label2

labell:
addi tl, t1, 1

label2:
addi t0, t0, 1
bgt a0, t0, loop

Forming Basic Blocks

A basic-block is a leader and all
instructions after the leader up to, but not
including the next leader.

Leader

Leader

Leader

Leader

_basicblocks:

mv
mv
blez

loop:

t0, zero
tl, zero
a0, done

andi t2, t0, 1
bnez t2, labell
add t1, t1, tO
j label2

labell:
addi tl, t1, 1

label2:
addi t0, t0, 1
bgt a0, t0, loop

Building the Control Flow Graph

A basic-block is a leader and all
instructions after the leader up to, but not
including the next leader.

Leader

Leader

Leader

Leader

_basicblocks:

mv
mv
blez

loop:

t0, zero
tl, zero
a0, done

andi t2, t

0, 1

bnez t2, labell
add t1, t1, tO
j label2

labell:
addi

label2:
addi
bgt

t1, t1, 1

t0, t0, 1
a0, t0, loop

Basic Block Identifiers

To uniquely identify blocks, we use the offsets (in words) of their leaders from the function’s
base address in memory.

Address

00010000:
00010004:
00010008:

0001000c:
00010010:

00010014:
00010018:

0001001c:

00010020:
00010024:

00010028:

Hex
(000002b3)
(00000333)
(02a05063)

(0012£393)
(00039663)

(00530333)
(0080006f)

(00130313)

(00128293)
(fea2cdel)

(00008067)

add
add
bge

andi
bne

add
jal

addi

addi
blt

ret

Instructions
t0, zero, zero
tl, zero, zero
zero, a0, 32

t2, to, 1
t2, zero, 12

tl, tl1, tO
zero, 8

tl, t1, 1

t0, t0, 1
t0, a0, -24

E.g., The second block starts 3 words away from the function’s base address so its

#B0

_basicblocks:
mv 10, zero
mv i1, zero
blez a0, done

#B3

loop:
addi 12,10, 1
bnez t2, labell

#B5 #B7
add t,1,0 label1:

] label2 addi t1,11,1

#B8
lablel2:
addi 10,10,1
bgt a0, t0, loop

ID is 3.

Pseudo Instructions and Labels

Pseudo-instructions in RISC-V simplify assembly code by representing higher-level operations.

LEI’ItSZ

Address
2x00400000
0x00400004
0x00400008
2x0040000C
2x00400010
0x00400014
0x00400018

A ARARANRT ~

Text Segment

0x000002b3 add x5,x0,x0
0x00000333 add x6,x0,x0
0x02205063 bge x0,x10,0x00000020
0x0012f393 andi x7,x5,1
0x00039663 bne x7,x0,0x0000000C
0x00530333 add x6,x6,x5
0x0080006f jal x0,0x00000008

NuARTIINDITD adddd

label2

, Zero
, Zero

, done

, 10, 1
, labell

tl, t@

For example, 'mv t0, zero' translates to 'add t0, zero, zero' during assembly, which copies the

value 0 into the register t0 as well.

Labels are symbolic pointers to specific instructions used for branch or jump offsets and do not
appear in the executable code. They are also used to simplify assembly.

Decoding Instructions

RISC-V instruction formats are differentiated by their opcode, while funct3 distinguishes
instructions within each format.

31 30 25 24 21 20 19 15 14 12 11 8 7 6 0
\ funct7 \ rs2 | sl [funct3 | rd | opcode | R-type
\ imm[11:0] | rsl [funct3 | rd | opcode | I-type
\ imm[11:5] \ rs2 | sl | funct3 | imm[4:0] | opcode | S-type
[imm[12] | imm[10:5] | rs2 | rsl [funct3 [imm[4:1] [imm[11] [opcode | B-type
\ imm|[31:12] I rd | opcode | U-type
[Tmm[20] | fmm[10:1] mm[11]] imm[19:12] | rd [opcode | J-type

Decoding the fourth instruction (0x0012f393) of the _basicblocks function as an example:

0x0012f393 = 0000 0000 0001 0010 1111 0011 1001 0011
opcode = 001 0011 (I-type instruction)

funct3 = 111 (andi instruction)

Lab #5: Control Flow
Graph

Data Structures

iInstructionsArray

An array of words that contains the instructions of the input function.

_basicblocks:
mv t0,
mv t1,
ao,

t2, €0, 1
t2, labell
tl, t1, tO

j label2

labell:
addi L

label2:
addi t0, to0,
bgt a0, to,

0x000002b3

Address
00010000
00010004:
00010008:

0001000c:
00010010

00010014:
00010018

0001001c:

00010020
00010024:

00010028

Hex
(000002b3)
(00000333)
(02a05063)

(0012£393)
(00039663)

(00530333)
(0080006F)

(00130313)

(00128293)
(fea2cde3l)

(00008067)

add
add
bge

andi
bne

add
jal

addi

addi
blt

ret

Instructions

t0, zero,
tl, zero,
zero, a0,

t2, t0, 1
t2, zero,

tl, t1, tO
zero, 8

tl, t1, 1

t0, €0, 1
to, ao, -2

zZero
zZero
32

12

4

0x00000333

0x02a05063

0x0012£393

0x00039663

0x00530333

0x0080006fF

0x00130313

0x00128293

O0xXFEA2C4E3

0x00008067

O0xFFFFFFFF

Ends with a sentinel value of -1.

leadersArray

An array of bytes representing the leadership
status of each instruction.

Each byte corresponds directly to an instruction
in the instructionsArray.

If an instruction is a leader, its corresponding byte
will be 1; otherwise, it will be 0.

Ends with a sentinel value of -1.

edgesList

A 2D byte array which stores all the edges within a function’s CFG.

In an entry: the first byte indicates the source, and the second byte indicates the target.

Source Target
0 3
B0 0 10
_basicblocks:
mv 10, zero 3 5
1111 t1, zero
blez a0, done 3 7
5 8
#B3
loop:
addi t2,10,1 7 8
bnez t2
8 3
8 10
1 -1

Ends with a sentinel value of -1 in both bytes.

successorslable

A 2D byte array storing immediate successors for each basic block in a function's CFG.

In an entry: the first byte indicates the block, followed by 2 bytes for its successorsList.

Basic Block Successors
0 3 10 1
#B5
add t,41,0 2 2 i .
j label2 5 8 1 1
7 8 -1 1
X e 8 3 10 1
lablel2:
addi 10,10, 1 10 -1 -1 -1
bgt a0, to, loop
-2 -1 1 1

Each successorsList ends with -1, while the basic blocks column ends with -2 (indicating the table’s end).

predecessorsTable

A 2D byte array storing immediate predecessors for each basic block in a function's CFG.

In an entry: the first byte indicates the block, followed by 4 bytes for its predecessorsList.

Basic Block Predecessors
B3 0 -1 -1 -1 1 -1
loop:

addi 12,10, 1 3 0 8 -1 = 1

bnez t2 5 3 -1 -1 -1 1

7 3 -1 -1 -1 -1

#BS 8 5 7 1 -1 <1
add f1,11,0

j label2 10 0 8 -1 -1 =

-2 -1 -1 1 -1 1

Each predecessorsList ends with -1, while the basic blocks column ends with -2 (indicating the table’s end).

Lab #5: Control Flow Graph

Function Signatures

getControlFlowGraph

Description:

The main function called from common.s to retrieve information about a
function's control flow graph.

Arguments:

a0: a pointer to the instructionsArray
al: a pointer to the leadersArray

a2: a pointer to the edgesList

ad: a pointer to the successorsTable

a4: a pointer to the predecessorsTable

Returns:
None

getLeaders

Description:
|dentifies the basic block leaders within a function's instructions.

Arguments:

a0: a pointer to the instructionsArray
al: a pointer to the leadersArray

Returns:

None

getEdges

Description:

Creates a list of edges between basic blocks within a function's control flow
graph.

Arguments:

a0: a pointer to the instructionsArray

Source Target

al: a pointer to the leadersArray

o
w

a2: a pointer to the edgesList

Returns:

None

L]l ol o] ~| ol @] w| o
w| o o w| o

getSuccessors

Description:

Creates a list of immediate successors for each basic block within a function’s
control flow graph.

Arguments:

a0: a pointer to the instructionsArray
al: a pointer to the leadersArray
a2: a pointer to the successorsTable

Basic Block Successors

10

Returns:

7

-1

0

3

None >
7

8

10

10 =1

Ll L]l w]|o|o| o] w

]
]
»
-1 -1
]
]
1

-2 -1

getPredecessors

Description:

Creates a list of immediate predecessors for each basic block within a function’s
control flow graph.

Arguments:

a0: a pointer to the instructionsArray
al: a pointer to the leadersArray
a2: a pointer to the predecessorsTable

Basic Block Predecessors

-1

Returns:

None

0
3
5
7
8

10

Llo|lo|lw|w|o| A
Ll |~ 4]l L]|®]| 4L

-1
-1
-1
1
1
1

-2

getBranchlmm (helper)

Description:
Takes a branch instruction (SB-type) and extracts the sign-extended immediate

Arguments:
a0: a branch instruction word

Returns:

a0: a sign extended immediate

31 25 24 20 19 15 14 12 11 7 6 0
imm[12]|10:5] rs2 rsi funct3 imm[4:1]11] opcode
7 5 5 3 5 7
offset[12|10:5] src2 src BEQ/BNE offset[4:1]|11] BRANCH
offset[12|10:5] src2 src BLT[U] offset[4:1|11] BRANCH
offset[12]|10:5] src2 src BGE[U] offset[4:1]|11] BRANCH

getdallmm (optional helper)

Description:
Takes a jump instruction (UJ-type) and extracts the sign-extended immediate

Arguments:
a0: a jal instruction word

Returns:

a0: a sign extended immediate

31 30 21 20 19 12 11 7 6 0
[20] imm[10:1] [11] imm[19:12] rd opcode
1 10 1 8 5 7

offset[20:1] dest JAL

Lab #5: Control Flow Graph

Testing

Program Arguments

We have provided some test inputs and expected outputs in the Tests folder.

One argument required for controlFlowGraph.s: the full path to the binary file of an
assembled RISC-V function.

Ensure there are no quotation marks or spaces in the path.

Edit Execute

@ Text Segment

Program Arguments: 229-labs-RISCV/ Lab_ControIFlowGraph/Public/Code/Tests/basicblocks.bin|

Unit Tests

The common.s file will run unit tests on the functions in controlFlowGraph.s.
Tests are hardcoded and do not use the file set as the program argument.
Check out the .data section in the common.s file to see how they are set up.

You can view the results in the “Run 1/O” panel of RARS.

Messages Run /0

== Running tests for functions —-

getLeaders — [] Almost there!
getEdges —— [] Almost there!
getSuccessors — [X] Great job!
getPredecessors —— [X] Great job!
getControlFlowGraph —-

UhWwNPRE

Parsed Control Flow Graph

The common.s file also parses the data structures populated by controlFlowGraph.s.
All structures must end with a sentinel value to be parsed properly.

You can view the results in the “Run 1/O” panel of RARS following the unit tests.

Messages Run /O Basic Block ID: 8

Instructions:
0x00128293

Control Flow Graph Infromation:
OxFEA2C4E3

6 basic block(s) found.
Successors: 3, 10

Note: Basic Block IDs are determined by the index of their leader in the instructionsArray. Predecessors: 5, 7
For example, if a block's first instruction is the 4th instruction in the instructionsArray,

Basic Block ID: 10
Basic Block ID: @

Instructions:
Instructions: 0x00008067
0x00000293
0x00000313 Successors: None
0x02A05063 Predecessors: @, 8

Successors: 3, 10

Predecessors: None Edges List:
9 -—> 3
Basic Block ID: 3 0 ——> 10
. 3 -—->5
Instructions: 3 -7
0x0012F393 5 -——> 8
0x00039663 7 -——> 8
Successors: 5, 7 g ::: 20

Predecessors: @, 8

Tests Folder

There are three tests: basicblocks, nestedloop, singleinstruction.

Each test has the following:

- A .s file containing the assembly code of the input function.

- A .bin (binary) file containing the assembled function (program argument).

- A .out file containing the correct output for the test.

Creating Tests

Unit tests and provided tests are not extensive.
Create your own tests to ensure your lab handles corner cases as well.

To create a test, do the following:
- Write the test function in assembly file (e.g., test.s).

- Create the binary file for your function i.e., execute the command “rars a dump
text Binary test.bin test.s”.

- You can now execute controlFlowGraph.s with the program argument set to
the full path of test.bin.

Lab #5: Control Flow Graph

Disassembler

What is a Disassembler?

RARS is a RISC-V Assembler that translates RISC-V instructions to executable binary.

0x000002b3 mv t0, zero
0x00000333 - tl, zero
0x02a05063 blez a0, 32
| . 0x0012£393 andi t2, to, 1

A Disassembler does the opposite. 0x00039663 bnez t2, 12
000530333 | =———m—) |44 tl, t1, tO
0x0080006f j 8
0x00130313 addi tl, t1, 1
0x00128293 addi t0, to, 1
Oxfea2c4de3 bgt a0, to0,-24
0x00008067 ret

For this lab, we will use an Open-Source RISC-V Disassembler
(https://github.com/michaeljclark/riscv-disassembler)

https://github.com/michaeljclark/riscv-disassembler
https://github.com/michaeljclark/riscv-disassembler
https://github.com/michaeljclark/riscv-disassembler

How to Use the Disassembler

There is a Disassembly folder in the Code folder.

There is a file called “print-instructions.c” in this folder that prints the equivalent
instructions for hexadecimal words.

First, compile “print-instructions.c” i.e., execute the command “gcc print-instructions.c”

Next, create a text file containing hexadecimal instructions. The file should look like this:

= example.txt X

Lab_ControlFlowGraph > Public > Disassembly > = example.txt
1 0x00100413
0x02850433
OxFFF50513
0x00050463
OxXFF5FFO6F
0x00800533
0x00008067

How to Use the Disassembler (cont.)

Once you have an executable for print-instructions.c (a.out) and a text file with
hexadecimal instructions (example.txt), execute “./a.out example.txt”

Here is the disassembled instructions from example.txt:

./a.out example.txt
fpepeeeEOEe1EE0E: 68166413 addi s@,zero,1
0000000000010664: 92856433 mul sB,ab,s6
0000000000010008: FfFf56513 addi af, af, -1

0000000000010606c: 00050463 beqz ag, 8 # oxleeld
0000000000010010: ff5ffo6f] -12 # 6xleeed
obepooeeooeel0014: 00888533 add ab, zero, s

0beooeeE00010018: 00BBBBET ret

Notes on the Disassembler

The disassembler translates addi t0, t0, 0 to mv t0, zero. Keep this in mind to avoid
confusion with addi instructions.

The disassembler will not translate a sentinel value (OXFFFFFFFF) as expected.

What to Submit?

A single file, called controlFlowGraph.s.

Keep the file in the Code folder of the git repository.
Do not modify the name of any function.
Do not remove the CMPUT 229 Student Submission License.

Do not modify the line .include "common.s".
Do not modify the common.s file.

Push your repository to GitHub before the deadline.

Lab #5: Control Flow Graph

Good Luck!

	Slide 1: Lab #5: Control Flow Graph
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Assignment
	Slide 8
	Slide 9: Overview
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Decoding Instructions
	Slide 17: Data Structures
	Slide 18
	Slide 19: leadersArray
	Slide 20
	Slide 21
	Slide 22
	Slide 23: Function Signatures
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31: Testing
	Slide 32: Program Arguments
	Slide 33: Unit Tests
	Slide 34: Parsed Control Flow Graph
	Slide 35: Tests Folder
	Slide 36: Creating Tests
	Slide 37: Disassembler
	Slide 38: What is a Disassembler?
	Slide 39: How to Use the Disassembler
	Slide 40: How to Use the Disassembler (cont.)
	Slide 41: Notes on the Disassembler
	Slide 42: What to Submit?
	Slide 43: Good Luck!

