
Lab #5: Control Flow Graph

CMPUT 229

What is a Control Flow Graph?

A Control Flow Graph (CFG) shows all the possible execution paths of a program.

Basic Blocks

A basic block is a segment of code where instructions

execute in order from start to finish.

Once execution enters a block, all instructions in the

block must be executed.

Only the first instruction of a basic block can be the

target for a branch or jump instruction.

The nodes of a CFG are basic blocks.

Edges

Edges denote directed control flow between basic

blocks.

There are two types of edges:

- forward edge

- back edge.

Branches and jumps redirect control flow, creating

multiple execution paths within a program.

Successors & Predecessors

A successor of a block Bi is any block that can be

reached from Bi.

The concepts of predecessor and immediate

predecessor are analogous.

An immediate successor of a block Bi directly follows

Bi.

Successors of B0

Immediate successors of B0

addi t0, zero, 10
addi t1, zero, 0
blt t0, zero, loop

Successors & Predecessors

A successor of a block Bi is any block that can be

reached from Bi.

The concepts of predecessor and immediate

predecessor are analogous.

An immediate successor of a block Bi directly follows

Bi.

Successors of B0

Immediate successors of B0

addi t0, zero, 10
addi t1, zero, 0
blt t0, zero, loop

B1 addi t1, zero, -1
J exit

B0

Assignment

Lab #5: Control Flow Graph

Overview

Goal: to generate control flow information for a single function.

Each function’s implementation should accurately populate these custom data structures.

These functions will populate data structures that represent control flow constructs:

- basic blocks, edges, successors, and predecessors.

The common.s file initializes the data structures and runs tests on your implementation.

It also helps to parse the populated data structures.

Overview

• Goal: generate control flow information for a single function.

• Task: write functions that populate data structures that represent control flow constructs:

– Basic blocks

– Edges

– Successors

– Predecessors

• Resources: the common.s file:

– initializes the data structures

– runs tests on your implementation

– helps to parse the populated data structures.

A Sample Input Function

The _basicblocks function below serves as an example of an intended input for the lab.

It will be used as a reference to explain the custom data structures.

Basic Block Leaders

The first statement in a function

Any statement that is the target of a

branch/jump

Any statement that immediately follows a branch

or jump

Basic-block leaders:

Forming Basic Blocks

A basic-block is a leader and all

instructions after the leader up to, but not

including the next leader.

B0

B1

Building the Control Flow Graph

A basic-block is a leader and all

instructions after the leader up to, but not

including the next leader.

B0

B1

Basic Block Identifiers

To uniquely identify blocks, we use the offsets (in words) of their leaders from the function’s

base address in memory.

E.g., The second block starts 3 words away from the function’s base address so its ID is 3.

Pseudo-instructions in RISC-V simplify assembly code by representing higher-level operations.

Labels are symbolic pointers to specific instructions used for branch or jump offsets and do not

appear in the executable code. They are also used to simplify assembly.

For example, 'mv t0, zero' translates to 'add t0, zero, zero' during assembly, which copies the

value 0 into the register t0 as well.

Pseudo Instructions and Labels

Decoding Instructions
RISC-V instruction formats are differentiated by their opcode, while funct3 distinguishes

instructions within each format.

Decoding the fourth instruction (0x0012f393) of the _basicblocks function as an example:

funct3 = 111 (andi instruction)

opcode = 001 0011 (I-type instruction)

0x0012f393 = 0000 0000 0001 0010 1111 0011 1001 0011

Data Structures

Lab #5: Control Flow
Graph

instructionsArray

An array of words that contains the instructions of the input function.

Ends with a sentinel value of -1.

leadersArray

An array of bytes representing the leadership

status of each instruction.

Each byte corresponds directly to an instruction

in the instructionsArray.

If an instruction is a leader, its corresponding byte

will be 1; otherwise, it will be 0.

Ends with a sentinel value of -1.

edgesList

A 2D byte array which stores all the edges within a function’s CFG.

Ends with a sentinel value of -1 in both bytes.

In an entry: the first byte indicates the source, and the second byte indicates the target.

successorsTable

In an entry: the first byte indicates the block, followed by 2 bytes for its successorsList.

A 2D byte array storing immediate successors for each basic block in a function's CFG.

Each successorsList ends with -1, while the basic blocks column ends with -2 (indicating the table’s end).

predecessorsTable

Each predecessorsList ends with -1, while the basic blocks column ends with -2 (indicating the table’s end).

A 2D byte array storing immediate predecessors for each basic block in a function's CFG.

In an entry: the first byte indicates the block, followed by 4 bytes for its predecessorsList.

Function Signatures

Lab #5: Control Flow Graph

getControlFlowGraph

a0: a pointer to the instructionsArray

Arguments:

Returns:

The main function called from common.s to retrieve information about a

function's control flow graph.

Description:

a1: a pointer to the leadersArray

a2: a pointer to the edgesList

a3: a pointer to the successorsTable

a4: a pointer to the predecessorsTable

None

getLeaders

a0: a pointer to the instructionsArray

Arguments:

Returns:

Identifies the basic block leaders within a function's instructions.

Description:

a1: a pointer to the leadersArray

None

getEdges

a0: a pointer to the instructionsArray

Arguments:

Returns:

Creates a list of edges between basic blocks within a function's control flow

graph.

Description:

a1: a pointer to the leadersArray

None

a2: a pointer to the edgesList

getSuccessors

a0: a pointer to the instructionsArray

Arguments:

Returns:

Creates a list of immediate successors for each basic block within a function’s

control flow graph.

Description:

a1: a pointer to the leadersArray

None

a2: a pointer to the successorsTable

getPredecessors

a0: a pointer to the instructionsArray

Arguments:

Returns:

Creates a list of immediate predecessors for each basic block within a function’s

control flow graph.

Description:

a1: a pointer to the leadersArray

None

a2: a pointer to the predecessorsTable

getBranchImm (helper)

a0: a branch instruction word

a0: a sign extended immediate

Arguments:

Returns:

Takes a branch instruction (SB-type) and extracts the sign-extended immediate

Description:

getJalImm (optional helper)

a0: a jal instruction word

a0: a sign extended immediate

Arguments:

Returns:

Takes a jump instruction (UJ-type) and extracts the sign-extended immediate

Description:

Testing

Lab #5: Control Flow Graph

Program Arguments

We have provided some test inputs and expected outputs in the Tests folder.

One argument required for controlFlowGraph.s: the full path to the binary file of an

assembled RISC-V function.

Ensure there are no quotation marks or spaces in the path.

Unit Tests

The common.s file will run unit tests on the functions in controlFlowGraph.s.

You can view the results in the “Run I/O” panel of RARS.

Check out the .data section in the common.s file to see how they are set up.

Tests are hardcoded and do not use the file set as the program argument.

Parsed Control Flow Graph

The common.s file also parses the data structures populated by controlFlowGraph.s.

You can view the results in the “Run I/O” panel of RARS following the unit tests.

All structures must end with a sentinel value to be parsed properly.

Tests Folder

There are three tests: basicblocks, nestedloop, singleinstruction.

- A .out file containing the correct output for the test.

- A .bin (binary) file containing the assembled function (program argument).

- A .s file containing the assembly code of the input function.

Each test has the following:

Creating Tests

Unit tests and provided tests are not extensive.

- You can now execute controlFlowGraph.s with the program argument set to

the full path of test.bin.

- Write the test function in assembly file (e.g., test.s).

To create a test, do the following:

- Create the binary file for your function i.e., execute the command “rars a dump

.text Binary test.bin test.s”.

Create your own tests to ensure your lab handles corner cases as well.

Disassembler

Lab #5: Control Flow Graph

What is a Disassembler?

RARS is a RISC-V Assembler that translates RISC-V instructions to executable binary.

For this lab, we will use an Open-Source RISC-V Disassembler

(https://github.com/michaeljclark/riscv-disassembler)

A Disassembler does the opposite.

https://github.com/michaeljclark/riscv-disassembler
https://github.com/michaeljclark/riscv-disassembler
https://github.com/michaeljclark/riscv-disassembler

How to Use the Disassembler

There is a Disassembly folder in the Code folder.

There is a file called “print-instructions.c” in this folder that prints the equivalent

instructions for hexadecimal words.

First, compile “print-instructions.c” i.e., execute the command “gcc print-instructions.c”

Next, create a text file containing hexadecimal instructions. The file should look like this:

How to Use the Disassembler (cont.)

Once you have an executable for print-instructions.c (a.out) and a text file with

hexadecimal instructions (example.txt), execute “./a.out example.txt”

Here is the disassembled instructions from example.txt:

Notes on the Disassembler

The disassembler translates addi t0, t0, 0 to mv t0, zero. Keep this in mind to avoid

confusion with addi instructions.

The disassembler will not translate a sentinel value (0xFFFFFFFF) as expected.

What to Submit?

A single file, called controlFlowGraph.s.

Do not modify the line .include "common.s".

Do not modify the common.s file.

Do not modify the name of any function.

Push your repository to GitHub before the deadline.

Do not remove the CMPUT 229 Student Submission License.

Keep the file in the Code folder of the git repository.

Good Luck!

Lab #5: Control Flow Graph

	Slide 1: Lab #5: Control Flow Graph
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Assignment
	Slide 8
	Slide 9: Overview
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Decoding Instructions
	Slide 17: Data Structures
	Slide 18
	Slide 19: leadersArray
	Slide 20
	Slide 21
	Slide 22
	Slide 23: Function Signatures
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31: Testing
	Slide 32: Program Arguments
	Slide 33: Unit Tests
	Slide 34: Parsed Control Flow Graph
	Slide 35: Tests Folder
	Slide 36: Creating Tests
	Slide 37: Disassembler
	Slide 38: What is a Disassembler?
	Slide 39: How to Use the Disassembler
	Slide 40: How to Use the Disassembler (cont.)
	Slide 41: Notes on the Disassembler
	Slide 42: What to Submit?
	Slide 43: Good Luck!

