Path Finder

CMPUT 229
University of Alberta

Your task in the lab

* Implement A* search in RISC-V

* Create a search visualizer for A* search in RISC-V with the help of
GLIR (Graphics Library for RISC-V)

GLIR

® Graphics Library for RISC-V.

e GLIR is a library built at the University of Alberta.

® |t has a collection of subroutines to emulate graphics.
® |t prints graphical shapes onto the terminal.

® GLIR contains functions to print lines, rectangles, triangles, and circles.

GLIR: Terminal

Cols

e The terminal is where the graphics will be rendered. |
e Grid of rectangular cells making up rows and columns. IIIIII

source: GLIR 4

e Each of these cells can have a character, a background
colour, and a foreground colour.

Rows

https://cmput229.github.io/GLIR/

GLIR: Terminal (cont’d)

(ROWS, COLS) == (R, C)

e Rows and columns describe the position of a cell. 0 D}IIIIIIII{D 7)
e Similar to the Cartesian coordinate system.

e But the tuple for a cell on the cell is (Row, Col), not IIIIIIII
(Col, Row). IIIIIIII
Tt el | | | || | |

e This is because terminals were designed to print IIIIIIII
text top to bottom, left to right. IIIIIIII

e This is also why the origin (0, 0) is at the top left of IIIIIIII
the terminal. {T:D}IIIIIIII{T:T}

source: GLIR

5

https://cmput229.github.io/GLIR/

GLIR: Preparation and Cleanup

e common.s calls GLIR _Start and GLIR_End before and after the

visualizer process.
® These are two important procedures in GLIR.
e GLIR _Start (preparation):
o Resizes the screen to the user-specified size.

o Hides the terminal cursor.

o Clears the terminal to the default background color.

e GLIR_End (cleanup):
o Resizes the screen back to default (24x80).

o Shows the terminal cursor.

o Clears all the previous terminal output.

common.s:.

GLIR Start

Run the visualizer
pathFinder

End the GLIR terminal
GLIR_End

GLIR: Color

® GLIR supports 256-color terminals.
e It changes colors using ANSI escape codes.

® ANSI escape codes are a set of codes that can be used to change terminal options such
as cursor location, font styling, and colors.

® GLIR abstracts away these ANSI escape codes to allow the user to simply pass it the
desired color code from the Xterm 256 colors.

e The list of Xterm 256 colors can be found here: https://www.ditig.com/256-colors-

cheat-sheet

https://www.ditig.com/256-colors-cheat-sheet

GLIR: Color Table

101 1e2 103 164 105

137 138

17'3179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195

S 2950 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231

Environment

e m X negaullysized cells

e From any cell:
o cannot move off the map
o cannot move into a water cell
> can only move into adjacent cells (cells immediately on the left, right, top, and
bottom)
 Number each cell with a unique non-negative integer
o The most upper left cell is numbered 0
° Increment by one each time we move one cell to the right.

o |f we reach the end of the row, we wrap to the left most cell one row below, and
continue

Exam ple Legend:
From cell 1:
e Can move into cells 0, and 6
* Cannot move up
move off the map

e Cannot move into cell 2
water cell

e Cannot move into cell 5
o diagonal from cell 1

Map:

Paths

e Defined between two cells

* Must obey environmental constraints

Valid Path

* Contiguous
* Consists of only grass cells

Invalid path

T e
--- e A* cannot jump over cells

-

Invalid path

e Path crosses a water cell
e A* cannot move into water cells

Invalid path

- BEEEoegonalpathing

* A* cannot move diagonally from one
cell to another cell

Path Concepts - Representation

-- * Represent a valid path as an array of
cell numbers.
--- * The path on the left can be
--- represented as:
1,6,11, 16, 21, 22, 23, 24
--- Path starts at cell 1

goes through cells 6, 11, 16, 21, 22, 23
(in that order)

and terminates at cell 24

Path Concepts - Distance

 Distance between adjacent cells is one (1) unit

* Distance of a path is the distance between the first cell and the last
cell of the path

* For a path with n cells, traveling from the first cell to the last cell on
the path takes n - 1 moves.

* Therefore, the distance for a path with n cells is n - 1 units.

Path Concepts - Distance

--- * Path contains eight cells:
1, 6,11, 16, 21, 22, 23, 24
--- * Distance is 7 units

A* - Introduction

* A pathfinding algorithm
* Uses heuristic functions to estimate the distance to the goal.

* By using heuristic function that never overestimate distances, A*...
° is guaranteed to find the shortest path, if it exists;
o saves time and memory by prioritizing search on seemingly shorter paths

A* - Terminologies

* For a particular valid path, P, from the start to an arbitrary cell, A, the parent of
A is another cell, B, that comes immediately before A on P

o The parent of the start cell is defined to be itself
o Accordingly, cell A is a child of cell B

* For a particular valid path, P, from the start to an arbitrary cell, A, the g of A is the
distance of P

* h: Estimated distance A to the goal
ef := g + h (f isdefinedtobe g + h)

parent and g - An Example
Consider the path 1, 6, 11, 16, 21, 22, 23, 24

The parent of cell 24 is cell 23
* Cell 23 comes immediately before cell 24 on this path

The g of cell 24 for this path is 7 units
* The distance of this path is 7 units

A* - Terminologies

Uses two lists to store information:

1. Closed List
e Stores relevant information about each cell
2. Open List

» Keeps track of the cells that are not explored yet

A* - Terminologies

* Visit a cell = Record the parent and g of the cell
* Expand a cell = Visit its adjacent cells

A* - Algorithm

Search begins with the start cell
1. Visit and expand the start cell

2. Repeatledly expands visited cells until...
 A* expands the goal » a solution is found
* No more visited cells to expand - no solutions found

A* - Algorithm

Uses two techiques to find the shortest path
1. Expands the cell with the smallest f first

2. A* keeps the parent and g of a cell A only for the shortest path
from the startto A

A* Pseudocode

* The webpage contains the pseudocode for A*

Pathfinder

* There are many pathfinding algorithms

* Pathfinding visualizers graphically shows how different pathfinding
algorithms search the environment for the shortest path from the
start to the goal

* Examples:
o https://pathfindout.com/

https://pathfindout.com/

Pathfinder Implementation

We implement a visualizer for:
* One algorithm: A*
* An environment with only two types of cells: grass and water

Four main components:
1. Map buffer

2. Water array

3. Closed list

4. Open list

Map Buffer

* Holds the internal representation of the map

e 1D array where the 1’th element is a...
o 1if cell 1is a water cell
o 0 otherwise

Water Array

* An array of integers
* Each element is the cell number of a water cell on a particular map

* A pointer to the water array will be passed as an argument to the
pathFinder function

Closed List

* An array of structs, one struct for each cell in the map

* Each struct contains three words in the following order
1. parent
2. g
3. h

* The corresponding struct of cell 1 will be the 1’th struct in the array
* A parent of -1 indicates that the cell has not been visited yet

* Record parent, g, and h if cell was visited

* If A* finds a shorter path to a cell, update its parent, g, and h

Map: Legend:

——n
24

Map Buffer: In-Memory Re resentat|on

vae 0 0| o l00]0] JoJo]o]o] J0]0]0]0]0]0/0]0]0]0]0]0

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

parent g h
Closed List:

WMIﬂﬂIﬂllﬂﬂlﬂﬂlﬂﬂlﬂﬂlﬂﬂﬂlﬂﬂ

Index)

Open List

* Keeps track of the cells that are visited but not expanded yet.
o To expand a cell, A* first remove it from the open list

* Contains only the cell number of the cells
* Cells are added and removed from the open list very frequently
* Need an efficient implementation - min-heap

(Min-)heap

* A complete binary tree that satisfies the heap property

* Implemented as a 1D array
o Root has index 0
o Left child of node 1 hasindex 2 X 1 + 1
o Right child of node 1 hasindex 2 X i + 2

valve | 0 | 1| 23| 4 .
2 3 4

Index O 1

Array Representation Tree Representation

Heap Property of Min-Heap

* The root node must have the smallest key

* For any given node, its key is less than or equal to the key of its
children (if any)

* We will use the f value of each cell as the key

* Must be checked when inserting, deleting, or changing the key of an
element

o |f the heap property no longer hold, elements must be re-arranged s.t. the
heap property holds again

Heap Property - Example

Tree Representation Satisfies the min-heap property

Array Representation

“awel o 11 | 2 | 3 |4
1 2 3 4

Index 0

Heap Property - Example

Tree Representation Does not satisfy the min-heap property

The key of the root node is greater than
the key of its left child

Array Representation
| vale| 1 | 0 | 2 | 3 | 4
1 2 3 4

Index 0

Heap Operations

* This lab provides three heap operations in the heapq. s file
1. insert:inserts a cell into the heap and maintains the heap property based
on the f values of the cells

2. popMin: removes the cell with the smallest f from the heap and maintains
the heap property based on the f values of the cells

3. minHeap: transforms an array of cell numbers into a heap in place based on
the f values of the cells

* Specifications for the three functions are on the webpage

Heap - Notes

e Although having a high-level understanding of the heap data
structure and the heap operations is sufficient to complete the lab...

* It is strongly recommended that students take a look at the source
code in heapqg.s

Initialization

e common. s declares the map buffer, closed list, and open list...

* ... and passes the pointers to each as arguments to the pathFinder
function

e Students must initialize the arrays with initial values
1. The map buffer is initialized as an arrays of zeros
2. Each element in the closed list is initialized as -1,0,0

3. Toinitialize the open list, simply set the size of the open list to zero
o The size of the open list is given a global variable in the heapq. s file

Heuristic Function

 Each cell is associated with a coordinate (R, C)

 We can use this coordinate to calculate the Manhattan distance
between two cells

Manhattan Distance

* The Manhattan distance between two cells with coordinates (R,, C,)
and (R,, GC,) is:

|R1-R, [+]C;-C,

* The absolute difference between the row numbers plus the absolute
difference between the column numbers

Manhattan Distance - Example

(Ry,Cy) = (0,1)

D | e

Ce e s DN
|-4]+]-3]

L T R

7

R A

Drawing the Map with GLIR «.9
Align cell 0 with the cell located at (0, 0)

For example, the coordinate of cell 16 is (4, 1)

Drawing the Map - Colors

e Grass — 10
* Water — 14 s v » x 2 = R
* Start — 9

133

* Goal —» 11 fl———

81 82 83

* Expanded cells — 8

* Solution path — 13 o 109 110 151 32 123 124 13

146 147 148 149 150 151

COlor COdes are given as global 178 179 180 181 182 183 184 185 186 187

214 215 216 217 218 219 220 221 222 223

variables in the common. s file

62

98

134

170

116

152

188

224

63

64

65

66

67

98 160 101 102 103

171 172

T17

153

189

225

118

154

190

226

119

155

iol

227

120

156

192

228

49

85

121

157

193

229

50

86

122

158

124

230

51

87

123

159

195

231

Drawing the Map - Updates

e There are multiple ways to display screen updates.

e The GLIR documentation points out two methods:
o Clear and Refresh

o Batch and Release.

e These two methods are helpful to know, but they are not appropriate for this lab.

o There will be a lot of screen updates, so the Clear and Refresh method will result in flickers because
clearing and printing onto the screen is a relatively slow process.

o For printing relatively simple shapes (one cell at a time) in this lab, using the Batch and Release method is
excessive and unnecessary.

46

https://cmput229.github.io/GLIR/

Drawing the Map - Updates

Instead, this lab uses the following method
1. Print the initial map to the terminal
2. Redraw cells in gray as A* expands them

3. If asolution path is found at the end, we redraw the cells on the
solutin path with purple

4. Redraw the start and goal cells
All of the steps can be achieved using the GLIR _PrintRect procedure

GLIR: GLIR PrintRect

GLIR _PrintRect:

Prints a rectangle on the terminal.

Arguments:
ao:
al:
a2:
a3:
a4:

ab:

Returns:

None

Row of the top left corner

Col of the top left corner

Signed height of the rectangle

Signed width of the rectangle

Colour to print with

Address of the null-terminated string to print with; if © uses the unicode full block
char (I) as default

48

Pathfinder Visualizer General Flow

Build the map

Draw the map on the terminal

Run A* search from the start cell

If a solution path is found, draw the solution path in purple

Al S

Redraw the start and goal cells

Demonstration

Build the map
BE R
Map Buffer:

aoEnonnEnnooEannoooooooono

Index O 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

parent g h

Initia\ization \ l /

H - IIEREEEREEN---

Open List - tree Open List - array

In this lab, A* must visit adjacent cells in the following order: left, right, top, and bottom

Visit the Start Cell

NN - IEEENEEREEE---

Open List - tree Open List - array

@
Index O

Expand ceH 1

Closed List

B - HIENENEREEEER::-

Open List - tree Open List - array

@
Index O

Step 1 - remove cell 1 from open list

No top adjacent cell

Right adjacent cell is a
water cell

Closed List

NN SEEEDREEEEEEREE

= HHENNEENEEEEN- - -

Open List - tree Open List - array
@ | Value |0
Index O

Step 2 - visit left adjacent cell

Visit cell 6

Closed List

B - HIENENEREEEER::-

Open List - tree Open List - array

(o) Value |0 |6

Index 0 1

Step 3 - visit bottom adjacent cell

Ca\culate f
Closed List

NN - IEIEEEEEEEE- -

Open List - tree Open List - array

faes Vaue 0 15

Index 0 1

L Heap property not satisfied

Heapify

Re-arrange elements in the open list such that it satisfies the heap property again

Open List - tree Open List - array

Value EE

Index 0 1

Expand ceH 6

Closed List

B - HIENENEREEEER::-

Open List - array

Value nn

Index 0 1

Remove cell 6 from open list

Visit cell 5
Closed List

EEEEEEEEERER- -

Open List - tree Open List - array

Value nB

Index 0 1

Right adjacent cell is a water cell, skip

Map ... Closed List
4 1 s [OEEEE 2 0 0 10 0
e s s EEEES 100100
2 s aofoaofoaofoaofo 1o

Open List - tree Open List - array

‘e _Value |05

Index 0 1

New g kiBlagr papeeetipneatidigiD), skip

Visit cell 1

f=09

Visit cell 11

---- Illﬂlllllllll

NN - BENEERNEEEEN:--

Open List - tree Open List - array

(0)f=9 _value [0]5 |11

e nbikale Sl than @&), skip

Visit cell 11

B - HIENENEREEEER::-

Open List - array

“Vatue |05 | 11

Index 0 1 2

Viditehptfpthe djpeeriistell

Exercise

* Try tracing the A* pseudocodes with the previous example

