
Lab 5: String Interning

CMPUT 229

University of Alberta

CMPUT 229 (University of Alberta) Lab 5: String Interning 1 / 20



Outline

1 Lab 5: String Interning
Motivation
Hashing
Example
Interning
Subroutines
Tips
Questions?

CMPUT 229 (University of Alberta) Lab 5: String Interning 2 / 20



Lab 5: String Interning

Lab 5: String Interning

CMPUT 229 (University of Alberta) Lab 5: String Interning 3 / 20



Lab 5: String Interning Motivation

Motivation

Suppose we have some text (possibly code) with many long, identical
strings:

def long and useless function(long variable name):

loop increment counter = 0;
while loop increment counter < long variable name:

loop increment counter = loop increment counter + 1

long and useless function(long variable name 1)

print(‘‘This isn’t useful!")

During a task such as compiling, we may need to compare these
strings (such as variable and function names) many, many times.

This is computationally expensive!

⇒ The solution: string interning.

CMPUT 229 (University of Alberta) Lab 5: String Interning 4 / 20



Lab 5: String Interning Motivation

Motivation

Instead of performing comparisons on long strings such as
long and useless function and loop increment counter, we
will:

Create a 1 word (4 byte) unique identifier for these strings.
Compare these identifiers.

For example:

long and useless function → 0x47fa018b

long variable name → 0xcc81b504

loop increment counter → 0x57cf47ab

Now the comparisons can be performed very quickly.

CMPUT 229 (University of Alberta) Lab 5: String Interning 5 / 20



Lab 5: String Interning Hashing

Hashing

A hashing function takes some data as input and returns a
fixed-length representation of that data.

For example:

"123password" d2bc2f8d09990ebe87c809684fd78c66

"This is a sentence." d15ba5f31fa7c797c093931328581664

"Hash me!" e09f9e0c17051e3ad13f4176076cbb92

These are all examples of the MD5 hash algorithm.

There are three things you should note about hash functions:

1 The output is always the same length.
2 Identical input will always produce identical output.
3 If the input is unbounded (can be any length), multiple inputs will have

the same output.

CMPUT 229 (University of Alberta) Lab 5: String Interning 6 / 20



Lab 5: String Interning Hashing

Hashing

When two different inputs have the same output in a hash function, a
collision occurs.

For example:

"Both strings have the same value" → 0x5f44a1b3

"for this particular hash function." → 0x5f44a1b3

One of the goals of a hash function is to reduce the number of
collisions that occur.

CMPUT 229 (University of Alberta) Lab 5: String Interning 7 / 20



Lab 5: String Interning Hashing

Hashing

In a hashtable, the output of a chosen hash function is used to specify
the index at which to place data.

The locations where data is stored in a hashtable are called buckets.
In the example table above, each bucket stores one datum.

CMPUT 229 (University of Alberta) Lab 5: String Interning 8 / 20



Lab 5: String Interning Hashing

Hashing

When a collision occurs in a hashtable, multiple items are stored in
the same bucket. If the bucket is full, overflow has occurred.
When it overflows it is replaced by a pointer to an unbounded data
structure (e.g., linked list, stack, or even another hashtable).

Figure: Hashing to buckets example.
CMPUT 229 (University of Alberta) Lab 5: String Interning 9 / 20



Lab 5: String Interning Example

Example

We will step through a simple hashtable example. Our example will
use the following checksum hash function (the same one you must
use in your lab):

data []

hash = 0

for d in data

do

hash = (hash + d) mod n

return hash

Each bucket holds one item, and use a linked list for overflow.

Finally, we set n = 5: n determines the range of possible outputs of
our hash function, and therefore the size of our hashtable as well.
When n = 5, our hash function will be in the range f (x) ∈ [0, 5).

CMPUT 229 (University of Alberta) Lab 5: String Interning 10 / 20



Lab 5: String Interning Example

Example

We will hash the following strings: "Pam", "Jim", "Mike", "Andy",
"Erin".

Start by hashing "Pam":

1 Our hash starts at 0.
2 The ASCII ’P’ has a value of 80.
3 (0 + 80)%5 = 0
4 The ASCII ’a’ has a value of 97.
5 (0 + 97)%5 = 2
6 The ASCII ’m’ has a value of 109.
7 (2 + 109)%5 = 1
8 "Pam" hashes to 1.

CMPUT 229 (University of Alberta) Lab 5: String Interning 11 / 20



Lab 5: String Interning Example

Example

Using the same procedure, we can hash the other strings as well:
"Pam" → 1, "Jim" → 3, "Mike" → 0, "Andy" → 1, "Erin" → 3.

Inserting Jim and then Mike into the hashtable is easy, because they
fit into their respective buckets. However, when we insert Andy and
then Erin, the buckets overflow, and we need to replace them with
pointers to linked lists.

CMPUT 229 (University of Alberta) Lab 5: String Interning 12 / 20



Lab 5: String Interning Interning

String Interning

We will make use of a hashtable to perform string interning. String
interning can be summarized with the following algorithm:

1 Hash the string to find the hashtable index.
2 Search the entry (either a bucket or unbounded data structure) for the

string.

1 If the string is found, return the unique identifier for the string.
2 If the string is not found, store it (either in a bucket or unbounded data

structure, whichever is appropriate) and then generate and return a
unique identifier for it.

Keep in mind that we are storing addresses to strings, not the strings
themselves in our hashtable. Strings can be variable length, but
addresses are always 1 word a 32-bit machine (e.g., rars).

CMPUT 229 (University of Alberta) Lab 5: String Interning 13 / 20



Lab 5: String Interning Interning

String Interning: The Assignment

From the assignment description, we can deduce that a bucket size of
1 should be used. When interning a string:

1 Empty bucket (0x0): store the string address, and return the unique
identifier.

2 Bucket with linked list (bit 31st set): to obtain the pointer, switch
bit 31 to 0. Search in the data structure: if there is a match, change
nothing, and return the unique identifier. Otherwise, add the new
string address to the data structure, and return the unique identifier.

3 Bucket with single entry: if the entry matches to the new string,
change nothing, and return the unique identifier. Otherwise, you must
initialize an unbounded data structure, store both (old and new) string
addresses in it, and then return the unique identifier for the new string.

CMPUT 229 (University of Alberta) Lab 5: String Interning 14 / 20



Lab 5: String Interning Interning

String Interning: The Assignment

A few other important points about string interning:

The string addresses given as arguments to subroutines are mutable:
that is, the memory in that location may be changed/erased. Before
saving a string address in the hashtable, make a copy of the string,
and then save the address of this copy in the hashtable.

Do not make a copy of a string if it is already stored in the hashtable.

You must implement three subroutines: internString,
getInternedString and internFile.

CMPUT 229 (University of Alberta) Lab 5: String Interning 15 / 20



Lab 5: String Interning Subroutines

Subroutines: internString

internString:

Input: a0 – address of a mutable string to be interned.
Return: a0 – unique identifier for the string.

Consider:

Identical strings must match exactly, and do not (necessarily) have
the same address.

You must make an immutable copy of the mutable strings given as
input.

The strings are null terminated.

CMPUT 229 (University of Alberta) Lab 5: String Interning 16 / 20



Lab 5: String Interning Subroutines

Subroutines: getInternedString

getInternedString:

Input: a0 – unique string identifier (interned string).
Return: a0 – the immutable address (copy) of the string it if was interned, zero otherwise.

Make sure your interned string identifier is unique and does not
change even when your buckets may overflow.

In other words, an identifier should always fetch the same string.

CMPUT 229 (University of Alberta) Lab 5: String Interning 17 / 20



Lab 5: String Interning Subroutines

Subroutines: internFile

internFile:

Input: a0 – address of a mutable file to be interned.
Return: a0 – address of a list of unique identifiers for each string in the file.

a1 – the number of identifiers in the list.

Consider:

Strings in the file are separated by either one or more space (0x20) or
line feed (0x0A) characters (these separators are not part of strings:
you must null-terminate them appropriately).

The file ends with an end of transmission (0x04) character (this is
also not part of any string).

CMPUT 229 (University of Alberta) Lab 5: String Interning 18 / 20



Lab 5: String Interning Tips

Tips for the Lab

The value that you chose for n in the hash function affects the size of
your hashtable. Overall, you most have enough space to handle at
most 128 unique strings.

The strings passed to your functions are mutable and must be copied
to immutable memory.

Only string addresses are being stored in the hashtable.

It is recommended (although not required) to create a string’s unique
identifier using a combination of the string’s hash and index in the
unbounded data structure.

You can dynamically allocate memory in RARS using system call 9:
set a0 to the number of bytes desired, a7 to 9, and invoke ecall
the address of the memory allocated will be in a0 after the call.

As always, read the assignment carefully and follow all style and
submission rules, including our RISC-V Callee/Caller convention.

CMPUT 229 (University of Alberta) Lab 5: String Interning 19 / 20



Lab 5: String Interning Questions?

Questions?

CMPUT 229 (University of Alberta) Lab 5: String Interning 20 / 20


	Lab 5: String Interning
	Motivation
	Hashing
	Example
	Interning
	Subroutines
	Tips
	Questions?


