Lab #6: Dead Code Elimination

What is Dead Code?

Dead Code refers to any line or block of code that is either unreachable (no execution path leads to that
code) oritis redundant i.e. if it is executed the code has no visible effect on the output of the program.

Example of a Function with Dead Code

function_with_dead_code:
addi sp, sp, 4

SwW s@, 0(sp)
1i t0, 10 # th = 10
add t1, a0, to # t1 = ad + to@
sub s@, a@, to # s0 = ab - t@
li t2, 20 # t2 = 20 (dead, all uses of the value in t2 are dead)
addi 3. 2. 5 # t3 = t2 + 5 (dead, value in t3 never used)
11 t4, @ # t4 (loop counter)
li t5; 5 # t5 (loop end trip count)
loop_start:
bge t4, t5, loop_end
slli t6, t4, 1 # t6 = t4 x 2 (dead, value in t6 never used)
add 1. 1. 4 # t1l += t4
sub s, sb, t4 # s = t4
addi t4, t4, 1 # 14 += 1
j loop_start
loop_end:
blez al, else_branch
add a@, tl1l, az # ab = tl1 + a2
j end_if
else_branch
sub ad, tl1, az # a0 = t1 - a2
addi zero, ti1, 1 # (dead, defines the zero register)
end _if:
mul s3, to, t2 # t3 = t0 * t2 (dead, value in s3 never used)
addi al, s@, 4 # al = s@ + 4 (dead, value in al never used)
add ad, a@, to # a@ += t0 (return)
mv al, so@ # al = s@ (return)
1w s@, @(sp)

addi sp, sp, 4
ret

What is Dead Code?
A Closer Look

Dead Code refers to any line or block of code that is either unreachable (no execution path leads
to that code) or it is redundant i.e. if it is executed the code has no visible effect on the output of
the program.

Let's study an example from the
sample function

function_with_dead_code:
addi sp, sp, 4
SW 58, 0(sp)

L E. 1R
PR 3 t1, al, t #t1=a0 +t
Instruction: |i t2, 20 S s Frg ol
> Dead because It Only feeds INto a L1 t2, 20 # t2 = 20 (dead, all uses of the value in t2 are dead)
Subsequent dead instructign_ addi t3, t2, 5 # t3 =1t2 +5 (dead, value in t3 never used)
li t4, 0 # t4 (loop counter)
1 t5, 5 # t5 (loop end trip count)

Instruction: addi t3, t2, 5

» Dead as Its result (t3) is never used later in
the program.

What is Dead Code?
A Closer Look

Dead Code refers to any line or block of code that is either unreachable (no execution path leads to that
code) oritis redundant i.e. if it is executed the code has no visible effect on the output of the program.

Example:

Instruction: addi zero t1 , 1 else_branch
L : : - : sub ad, tl, a2 ¥ al =tl - a2
_»Dead because It Is trying to set the zero register which is adi zero, 1, 1 # (dead, defines the zero reaister]
Immutable. .
end if:

mul 53, t0, t2 # 13 = t0 % t2 (dead, value in s3 never used)
Instruction: muI s3 t0 t2 addi al, so, 4 #al =50 +4 (dead, value in al never used)
» Dead as its result (s3) Is never used add a0, a0, t0 # ab += 0 (return)

mv al, sb # al = s@ (return)

W 50, 0(sp)
Instruction: addi a1, s0, 4 'ﬂl 5P, Sp, 4

» Dead because the result (al) Is discarded immediately

Liveness Analysis

A variable is said to be live at a particular point in a program if its current value might be
used later meaning it hasn’t been overwritten or discarded yet.

Liveness Analysis

Two Levels of Liveness Analysis

*Block-Level Analysis
» Identifies live variables at the entry and exit of each basic block.

*Instruction-Level Analysis
» Tracks liveness at the granularity of individual instructions.
» Especially useful for catching transitively dead code that block-level analysis may
overlook.

Block-Level Liveness Analysis

Block-level liveness analysis uses a fixed-point algorithm to figure out which variables
are still needed at the end of each basic block in a program's control flow.

The algorithm iteratively computes the sets of variables that are live at the entry and exit
of each basic block in the CFG. It continues until a fixed point is reached, where further

iterations do not change the sets of live variables.

Pseudo Code for Fixed-Point Iteration (Block-Level Liveness Analysis)

liveness_analysis:

for each block in cfg.blocks:
block.live_in = empty_set
block.live_out = empty_set

Initially, all sets are empty.
intialize worklist Then:
worklist.add(exit_block) tart by adding the exit block to the worklist.

while worklist not empty:

block = worklist.pop() <or each block, calculate its new live out set by combining

new_live_out = empty_set the 1ive in sets of its successors.
if block == exit_block:

new_live_out = function_live_out X ompute the new live in set using the formula:
gen U (live_out - kill)

for each succ in block.successors: llve_ln
new _live_out = new_live_out U succ.live in

new_live_in = block.gen U (new_live_out - block.kill 2f either set changes, update them and re-add the block's
predecessors to the worklist.

if new_live_out != block.live out or new _live_in != block.live_in:
block.live out = new _live _out
block.live_in = new_live_in

This continues until no further changes occur in any set,
for each pred in block.predecessors indicating fixed-point convergence.

if pred not in worklist:

worklist = worklist.add(pred)

Instruction-Level Liveness Analysis

After reaching fixed-point convergence at the block level, we can perform a
finer, instruction-level liveness analysis to catch more precise instances of dead code.

Block-level analysis may miss definitions that are never used before being redefined
within the same block, these are effectively dead but still appear live at the block level.

Instruction-level analysis resolves this by examining each instruction in reverse (from last
to first) within a block. This reverse pass catches redefinitions that hide unused values,
allowing us to more accurately identify dead code.

Pseudo Code for Dead Code Identification (Instruction-Level Liveness Analysis)

find_dead_code:

for each block in cfg.blocks:
current_live_out = block.live_out

for each instruction in block (iterate from end to start):

if instruction is already marked as dead:
continue to next instruction

new_live_in = instruction.gen U (current_live_out - kill)

if instruction.kill:
if instruction.kill not in current_live_out or zero_register in instruction.kill:
mark instruction as dead

current_live_out = new live_in

The algorithm initializes current_1live_out with the
block's 1ive_out set.

[t then walks through each instruction in reverse. For
each instruction:

2 it's already marked dead, skip it.
A ompute live_in = gen U (live_out - kill).

2 it defines a register that isn't live out (and
Isn't zero), mark it as dead.

2Jpdate current_live_out to reflect the new liveness
state.

Lab #6: Dead Code Elimination

Data Structures

_basicblocks:
mv t0,
mv tl,
blez al,

loop:

J

labell:

iInstructionsArray

An array of words that contains the instructions of the input function.

Zero
Zero
done

2, 0, 1
t2, labell
1, 1, t0
label2

addi tl, tl,

label2:

addi t0, t0,

bgt

a0, to,

Address
00010000
00010004:
00010008:

0001000c:
00010010:

00010014:
00010018:

0001001c:

00010020:
00010024:

00010028:

Hex
(000002b3)
(00000333)
(02a05063)

(0012£393)
(00039663)

(00530333)
(0080006f)

(00130313)

(00128293)
(fea2cdel)

(00008067)

add
add
bge

andi
bne

addi

addi
blt

ret

Instructions
t0, zero, zero
tl, zero, zero
zero, a0, 32

€2, 0, 1
t2, zero, 12

1. 1. %0
zero, B

el €l 1

£, 0, 1
tﬂ, ﬁﬂ, -24

0x000002b3

0x00000333

0x02a05063

0x0012£393

0x00039663

0x00530333

0x0080006%

0x00130313

0x00128293

O0XFEAZ2C4E3

0x00008067

0xXFFFFFFFF

Ends with a sentinel value of -1.

* Imagine some RISC-V Assembly function with
basic blocks BO, B3, B10, B12. Then consider
the genArray for foo, an array of words, where
each word-entry corresponds to a block in the
CFG for foo and each such word is a bitvector
which represents the gen-set for that block.

* Every bit that is set (i.e. the bits that are 1)
represents the registers that are generated or
defined within a block before any of them are
killed by another instruction in the same block.

* Example: if bit 23 is set in the third element of
the genArray, that means register x23 is part of
the genset for the 3 block (B10 in the picture)

genArray

0x60001967

0x20000140

0x00000D06

0x00001167

OxFFFFFFFF

0110 0000 0000 0000 0001 1001 0110 0111

0010 0000 0000 0000 0000 0001 0100 COCO

0000 0000 0000 00O 0O0O 1101 0000 0110

0000 0000 0000 0000 0001 0001 0110 0111

OXFFFFFFFF

[BitVector corresponding to
B0

|

[BitVector corresponding to
B3

|

BitVector corresponding to
B10

|

B12

BitVector corresponding to

sentinel

killArray

* An array of words representing the kill sets for each basic block in the input function's CFG.

* Each word is a bit vector where each bit corresponds to a register that is killed (overwritten
or redefined) in that block.

 Ends with a sentinel value of -1 (OxFFFFFFFF).

livelnArray

* An array of words representing the live-in sets for each basic block in the input function's
CFG.

* Each word is a bit vector where each bit corresponds to a register that is in the live-in of a
given block.

e Ends with a sentinel value of -1 (OXFFFFFFFF).

liveOutArray

* An array of words representing the live-out sets for each basic block in the input function's
CFG.

* Each word is a bit vector where each bit corresponds to a register that is in the live-out of a
given block.

 Ends with a sentinel value of -1 (OxFFFFFFFF).

deadCodeArray

* An array of bytes representing the dead code status
of each instruction in the input function.

* Each byte corresponds directly to an instruction.
 If the instruction is identified as dead code, its

corresponding byte will be 1; if it is not dead code,
the byte will be O.

Ends with a sentinel value of -1.

Example may not be representative of an actual function with dead code, only for
illustration

workList

worklist:

The workList is a circular queue used to manage a list of items to be processed. It operates with a fixed size
and maintains two indices:

- workListHeadIndex: Points to the position in the list where the next item will be removed.

- workListTaillndex: Points to the position in the list where the next item will be added.

The workList uses an array where:

- An entry of -1 (OxFF) indicates an empty slot.

- When the list is full, adding a new item will result in an error if there is no space.

- When the list is empty, removing an item will return an error if there are no items to remove.

The workList is implemented as a circular queue, meaning that when the tail index reaches the end of the
array, it wraps around to the beginning, and similarly for the head index.

workList

workList

workListHeadIndex

workListTaillndex

InWorkListArray

An array of bytes corresponding to each block in the input function's
CFG.

Each byte represents whether the block is currently in the worklist.

If the block is in the worklist, the byte will be set to 1; otherwise, it will be
set to 0.

Ends with a sentinel value of -1 (OxFF).

Lab #6: Dead Code Elimination

Function Signatures

deadCodeElimination

Performs an iterative analysis to remove dead code from the input. This is the main entry point of the solution.
Follow the recommended flow given in the lab description.

Arguments:
a0: Pointer to the instructionsArray.
al: Pointer to the genArray.
a2: Pointer to the killArray.
a3: Pointer to the liveInArray.
a4: Pointer to the liveOutArray.
a5: Input function's live-out set.
a6: Pointer to the deadCodeArray.
a/. Pointer to the refinedInstructionsArray.

Returns:
None.

getGenKillSets

Processes each basic block to compute GEN and KILL sets for later use.
GEN sets mark registers read before defined in the block.
KILL sets mark registers defined within the block.

Instructions marked dead are skipped.
For each instruction in a block:
- Used registers that have not already been killed are added to GEN.
- Defined registers are added to KILL.
The computed GEN and KILL sets for each block are stored in the provided arrays.

Arguments:
a0: Pointer to the instructionsArray.
al: Pointer to the deadCodeArray.
a2: Pointer to the genArray.
a3: Pointer to the killArray.

Returns:
None.

getlLiveSets

lteratively computes live-in and live-out sets for each basic block
until they reach a fixed point. Refer to the lab description for details on the algorithm.
The live-in and live-out sets are stored back in the provided arrays.

Arguments:
a0: Pointer to the genArray.
al: Pointer to the killArray.
a2: Pointer to the livelnArray.
a3: Pointer to the liveOutArray.
a4: Function's live-out set.

Returns:
None.

markDeadCode

Performs dead code identification analysis by iterating backwards through each basic block's instructions.
For each instruction (starting from the block's last instruction), marks each instruction as O or 1 (alive or dead) and
returns 1if dead code marked, O otherwise.

Arguments:
a0: Pointer to the instructionsArray.
al: Pointer to the liveOutArray.
a2: Pointer to the deadCodeArray.

Returns:
a0: Dead code status (1 if dead code found, O otherwise).

fixTargets

Description:
Adjusts branch and jump instruction targets based on the presence of dead code.

Arguments:
a0: Pointer to the instructionsArray.
al: Pointer to the deadCodeArray.

Returns:
None.

removeDeadCode

Description:
Removes dead code from the input function by filling the refinedInstructionsArray with only the
instructions marked as not dead in the deadCodeArray.

Arguments:
a0: Pointer to the instructionsArray.
al: Pointer to the deadCodeArray.
a2: Pointer to the refinedlnstructionsArray.

Returns:
None.

decodelnstruction

Description:
Decodes a given instruction to determine its defined and used registers and returns them as bit vectors.

Arguments:
a0: An instruction word.

Returns:
a0: Bit vector of the defined register.

al: Bit vector of the used registers.

For this lab, only the following opcodes are relevant:

[-type (load): 0000011

[-type (arithmetic with immediate): 0010011

U-type (load upper immediate): 0110111

S-type (store): 0100011

SB-type (branch): 1100011

R-type (arithmetic): 0110011

Jump instructions are not considered to define or use any registers in this lab.

workList Functions

initliazeWorkList: addToWorkList:
Initializes the head and tail indices of the workList to zero. Adds an item to the workList. Returns an error if the listis
Sets up the workList to be empty and ready for new entries. full.
Arﬂl“r:e”tsz Arguments:
one. a0: Item to add to workList.
Returns:
None. REturnS:
a0: 0 on success, -1 (OxFF) if workList is full.
popFromWorkList:
Pops an item from the workList.
Arguments:
None.
Returns:

a0: Item from workList or -1 (OxFF) if workList is
empty.

adjustBranchImm (optional
nelper)

Description:
Takes a branch instruction (SB-type) and extracts the sign-extended
immediate
Arguments:
a0: A branch instruction.
al: New immediate value.
Returns:
a0: Branch instruction with updated immediate.
31. . | | . .25 24' _ . .20 19' . - .15 14. .12 11. . _ -7 6_ - . .
.immL12|1'0:5]. | | rs2 | | rs1 | funct3 | imrn.[4:1|.11] . . ~ opcode
7 5 5 3 5 7
offset[12]|10:5] src2 src BEQ/BNE offset[4:1[11] BRANCH
offset[12]|10:5] src2 src BLT[U] offset[4:1(11] BRANCH
offset[12]|10:5] src2 src BGE[U] offset[4:1|11] BRANCH

adjustjallmm (optional helper)

Description:
Updates the immediate value of a jump instruction (jal) (U] type).

Arguments:
a0: A jal instruction.
al: New immediate value.
Returns:
a0: Jump instruction with updated immediate.
31. ' | | ' .25 24' _ ' '20 19' ' ' .15 14. .12 11. ' _ '7 6_ ' ' .
.immg12|1'0:5] | | | rs2 | | rs1 | funct3 | imrn.[4:1|.11] . . ~ opcode
7/ 5 5 3 5 7
offset[12]|10:5] src2 src BEQ/BNE offset[4:1[11] BRANCH
offset[12]|10:5] src2 src BLT[U] offset[4:1(11] BRANCH
offset[12]|10:5] src2 src BGE[U] offset[4:1|11] BRANCH

Flow of Implementation

Recommended Program Flow

1. Call getControlFlowGraph to populate the CFG data structures.

2. Initialize the deadCodeArray with all instructions set as unmarked.

3. Perform the iterative analysis as follows:

* Call genKillSets to compute the generation and killing sets.

* Call getLiveSets to determine the live-in and live-out sets for each basic block.
* Call markDeadCode to identify and mark the dead code based on the live sets.
* If markDeadCode indicates that new dead code was found, return to step 3.

4. Once the loop exits (when no new dead code is found), call fixTargets to adjust any targets affected by the dead code
removal.

5. Finally, call removeDeadCode to eliminate the marked dead code from the program.

Lab #6: Dead Code Elimination

Testing

CFG simulator tool

In the Code/test_case_validator folder you will find an executable called cfg_verifier.

To create a test case, write a RISC-V function (e.g., INPUT_FUNCTION.s) in an assembly file to begin with. Then, type in the
following command in the terminal: rars a dump .text Binary <INPUT_FUNCTION.bin> <INPUT_FUNCTION.s>.

The binary file generated by this command can serve as a program argument to the CFG_simulator tool included with this
lab. The cfg_verifier tool will parse the file and output another binary file (the cfg.bin) which can be used as an argument
to the deadCodeElimination.s file.

Run as ./cfg_verifier <INPUT_FUNCTION.bin>

Program Arguments

We have provided some test inputs and expected outputs in the Tests folder.

Two arguments required for deadCodeElimination.s: the full path to the binary file
cfg.bin (output from the cfg_verifier tool) and the final live-out array of the function.

Ensure there are no quotation marks or spaces in the path.

Edit Execute
@

Text Segment

Program Arguments: !29—Iabs—RISCWLab_CuntrulFIanraph/Public/Cnde/Tests/basicblncks.bin\

Tests Folder

There are three tests: basicblocks, nestedloop, singleinstruction.

Each test has the
following:
- A .s file containing the assembly code of the input

function.
- A.bin (binary) file containing the assembled function (program

argument).
- A.txt file containing the correct output for the test.

Unit Tests

The common.s file will run unit tests on the functions in
deadCodeElimination.s. |

Tests are hardcoded and do not use the file set as the program argument.
Check out the .data section in the common.s file to see how they are set up.

You can view the results in the “Run I/0” panel of RARS.

Messages Run |/O

—— Running tests for functions —

1: decodeInstruction — [X] Great job!
2: getGenKillSets — [X] Great job!

3: getLiveSets —— [] Almost there!

4: markDeadCode — [X] Great job!

5: fixTargets — [] Almost there!

6: removeDeadCode —— [X] Great job!

Lab #6: Dead Code Elimination

Disassembler

What is a Disassembler?

RARS is a RISC-V Assembler that translates RISC-V instructions to executable binary.

0x000002b3
0x00000333
0x02a05063
0x0012£393

A Disassembler does the 000039663
0x00530333

OppOSIte' 0x0080006f

0x00130313
0x00128293
Oxfea2cdel
0x00008067

For this lab, we will use an Open-Source RISC-V Disassembler (
https://qgithub.com/michaeljclark/riscv-disassembler)

https://github.com/michaeljclark/riscv-disassembler

How to Use the Disassembler

There is a Disassembly folder in the Code folder.

There is a file called “print-instructions.c” in this folder that prints the equivalent
instructions for hexadecimal words.

First, compile “print-instructions.c” by running e.g. “gcc print-instructions.c”

Next, create a text file containing hexadecimal instructions. The file should look like this:

= example.txt X

Lab_ControlFlowGraph > Public > Disassembly > = example.txt
1 0x00100413
0x02850433
OxFFF50513
0x00050463
OxFF5FFO6F
0x00800533
Ox00008067

How to Use the Disassembler (cont.)

Once you have an executable for print-instructions.c (a.out) and a text file with
hexadecimal instructions (example.txt), execute “./a.out example.txt”

Here is the disassembled instructions from example.txt:

.fa.out example.txt
0000000000010000: 6060166413 addi s,zero, 1
boboobboobolobed: 02858433 mul sB, ab,6 so
0000000000010068: 56513 adda af, ad, -1

00000000000100606Cc: 008506463 beqz ag 8 H oxleeld
000000000B010018: Ff5ffosf] -12 # Gxloeoed
0000e0000001061U: 0888533 add af,zero, s

bobobbbobbbl1ob18: ©OOBOBO6T ret

Notes on the Disassembler

The disassembler translates addi t0, t0, 0 to mv t0, zero. Keep this in mind to
avoid confusion with addi instructions.

The disassembler will not translate a sentinel value (OXFFFFFFFF) as expected.

What to Submit?

A single file, called controlFlowGraph.s.

Keep the file in the Code folder of the qgit repository.

Do not modify the name of any function.
Do nhot remove the CMPUT 229 Student Submission License.

Do not modify the line .include "common.s".

Do not modify the common.s file.

Push your repository to GitHub before the deadline.

Lab #6: Dead Code Elimination

Good Luck!

	Lab #6: Dead Code Elimination
	Slide 2
	Slide 3
	Slide 4
	Liveness Analysis
	Liveness Analysis (2)
	Block-Level Liveness Analysis
	Slide 8
	Instruction-Level Liveness Analysis
	Slide 10
	Data Structures
	Slide 12
	genArray
	killArray
	liveInArray
	liveOutArray
	deadCodeArray
	workList
	workList (2)
	inWorkListArray
	Function Signatures
	deadCodeElimination
	getGenKillSets
	getLiveSets
	markDeadCode
	fixTargets
	removeDeadCode
	decodeInstruction
	workList Functions
	Slide 30
	Slide 31
	Flow of Implementation
	Testing
	CFG_simulator tool
	Program Arguments
	Tests Folder
	Unit Tests
	Disassembler
	What is a Disassembler?
	How to Use the Disassembler
	How to Use the Disassembler (cont.)
	Notes on the Disassembler
	What to Submit?
	Good Luck!

