
Lab #6: Dead Code Elimination

CMPUT 229

What is Dead Code?

Dead Code refers to any line or block of code that is either unreachable (no execution path leads to that
code) or it is redundant i.e. if it is executed the code has no visible effect on the output of the program.

What is Dead Code?
A Closer Look

Dead Code refers to any line or block of code that is either unreachable (no execution path leads
to that code) or it is redundant i.e. if it is executed the code has no visible effect on the output of
the program.

Let’s study an example from the
sample function

Instruction: li t2, 20
 ▸ Dead because it only feeds into a

subsequent dead instruction.

Instruction: addi t3, t2, 5
 ▸ Dead as its result (t3) is never used later in

the program.

What is Dead Code?
A Closer Look

Dead Code refers to any line or block of code that is either unreachable (no execution path leads to that
code) or it is redundant i.e. if it is executed the code has no visible effect on the output of the program.

Example:

Instruction: addi zero t1, 1
 ▸ Dead because it is trying to set the zero register which is

immutable.

Instruction: mul s3, t0, t2
 ▸ Dead as its result (s3) is never used

Instruction: addi a1, s0, 4
 ▸ Dead because the result (a1) Is discarded immediately

Liveness Analysis
A variable is said to be live at a particular point in a program if its current value might be
used later meaning it hasn’t been overwritten or discarded yet.

Liveness Analysis

Two Levels of Liveness Analysis

•Block-Level Analysis
 Identifies live variables at the ▸ entry and exit of each basic block.

•Instruction-Level Analysis

 Tracks liveness at the ▸ granularity of individual instructions.
 Especially useful for catching ▸ transitively dead code that block-level analysis may

overlook.

Block-Level Liveness Analysis

Block-level liveness analysis uses a fixed-point algorithm to figure out which variables
are still needed at the end of each basic block in a program's control flow.

The algorithm iteratively computes the sets of variables that are live at the entry and exit
of each basic block in the CFG. It continues until a fixed point is reached, where further
iterations do not change the sets of live variables.

liveness_analysis:

for each block in cfg.blocks:
block.live_in = empty_set
block.live_out = empty_set

intialize worklist

worklist.add(exit_block)

while worklist not empty:
block = worklist.pop()

new_live_out = empty_set

if block == exit_block:
 new_live_out = function_live_out

for each succ in block.successors:
 new_live_out = new_live_out ∪ succ.live_in

new_live_in = block.gen ∪ (new_live_out - block.kill)

if new_live_out != block.live_out or new_live_in != block.live_in:
block.live_out = new_live_out
block.live_in = new_live_in

for each pred in block.predecessors
if pred not in worklist:
worklist = worklist.add(pred)

Pseudo Code for Fixed-Point Iteration (Block-Level Liveness Analysis)

Initially, all sets are empty.

Then:
Start by adding the exit block to the worklist.

For each block, calculate its new live out set by combining
the live in sets of its successors.

Compute the new live in set using the formula:
live_in = gen (live_out - kill)∪

If either set changes, update them and re-add the block's
predecessors to the worklist.

This continues until no further changes occur in any set,
indicating fixed-point convergence.

Instruction-Level Liveness Analysis

After reaching fixed-point convergence at the block level, we can perform a
finer, instruction-level liveness analysis to catch more precise instances of dead code.

Block-level analysis may miss definitions that are never used before being redefined
within the same block, these are effectively dead but still appear live at the block level.

Instruction-level analysis resolves this by examining each instruction in reverse (from last
to first) within a block. This reverse pass catches redefinitions that hide unused values,
allowing us to more accurately identify dead code.

find_dead_code:

for each block in cfg.blocks:
current_live_out = block.live_out

for each instruction in block (iterate from end to start):

if instruction is already marked as dead:
 continue to next instruction

 new_live_in = instruction.gen ∪ (current_live_out - kill)

 if instruction.kill:
if instruction.kill not in current_live_out or zero_register in instruction.kill:
 mark instruction as dead

current_live_out = new_live_in

Pseudo Code for Dead Code Identification (Instruction-Level Liveness Analysis)

The algorithm initializes current_live_out with the
block's live_out set.

It then walks through each instruction in reverse. For
each instruction:

If it's already marked dead, skip it.

Compute live_in = gen (live_out - kill)∪ .

If it defines a register that isn't live out (and
isn't zero), mark it as dead.

Update current_live_out to reflect the new liveness
state.

Data Structures

Lab #6: Dead Code Elimination

genArray

• Imagine some RISC-V Assembly function with
basic blocks B0, B3, B10, B12. Then consider
the genArray for foo, an array of words, where
each word-entry corresponds to a block in the
CFG for foo and each such word is a bitvector
which represents the gen-set for that block.

• Every bit that is set (i.e. the bits that are 1)
represents the registers that are generated or
defined within a block before any of them are
killed by another instruction in the same block.

• Example: if bit 23 is set in the third element of
the genArray, that means register x23 is part of
the genset for the 3rd block (B10 in the picture)

killArray
• An array of words representing the kill sets for each basic block in the input function's CFG.

• Each word is a bit vector where each bit corresponds to a register that is killed (overwritten
or redefined) in that block.

• Ends with a sentinel value of -1 (0xFFFFFFFF).

liveInArray
• An array of words representing the live-in sets for each basic block in the input function's

CFG.

• Each word is a bit vector where each bit corresponds to a register that is in the live-in of a
given block.

• Ends with a sentinel value of -1 (0xFFFFFFFF).

liveOutArray

• An array of words representing the live-out sets for each basic block in the input function's
CFG.

• Each word is a bit vector where each bit corresponds to a register that is in the live-out of a

given block.

• Ends with a sentinel value of -1 (0xFFFFFFFF).

deadCodeArray

• An array of bytes representing the dead code status
of each instruction in the input function.

• Each byte corresponds directly to an instruction.

• If the instruction is identified as dead code, its
corresponding byte will be 1; if it is not dead code,
the byte will be 0.

Example may not be representative of an actual function with dead code, only for
illustration

workList
worklist:

The workList is a circular queue used to manage a list of items to be processed. It operates with a fixed size
and maintains two indices:
 - workListHeadIndex: Points to the position in the list where the next item will be removed.
 - workListTailIndex: Points to the position in the list where the next item will be added.

 The workList uses an array where:
 - An entry of -1 (0xFF) indicates an empty slot.
 - When the list is full, adding a new item will result in an error if there is no space.
 - When the list is empty, removing an item will return an error if there are no items to remove.

The workList is implemented as a circular queue, meaning that when the tail index reaches the end of the
array, it wraps around to the beginning, and similarly for the head index.

workList

inWorkListArray

• An array of bytes corresponding to each block in the input function's
CFG.

• Each byte represents whether the block is currently in the worklist.

• If the block is in the worklist, the byte will be set to 1; otherwise, it will be
set to 0.

• Ends with a sentinel value of -1 (0xFF).

Function Signatures

Lab #6: Dead Code Elimination

deadCodeElimination
 Performs an iterative analysis to remove dead code from the input. This is the main entry point of the solution.
 Follow the recommended flow given in the lab description.

 Arguments:
 a0: Pointer to the instructionsArray.
 a1: Pointer to the genArray.
 a2: Pointer to the killArray.
 a3: Pointer to the liveInArray.
 a4: Pointer to the liveOutArray.
 a5: Input function's live-out set.
 a6: Pointer to the deadCodeArray.
 a7: Pointer to the refinedInstructionsArray.

 Returns:
 None.

getGenKillSets
 Processes each basic block to compute GEN and KILL sets for later use.
 GEN sets mark registers read before defined in the block.
 KILL sets mark registers defined within the block.

 Instructions marked dead are skipped.
 For each instruction in a block:
 - Used registers that have not already been killed are added to GEN.
 - Defined registers are added to KILL.
 The computed GEN and KILL sets for each block are stored in the provided arrays.

 Arguments:
 a0: Pointer to the instructionsArray.
 a1: Pointer to the deadCodeArray.
 a2: Pointer to the genArray.
 a3: Pointer to the killArray.

 Returns:
 None.

getLiveSets
 Iteratively computes live-in and live-out sets for each basic block
 until they reach a fixed point. Refer to the lab description for details on the algorithm.
 The live-in and live-out sets are stored back in the provided arrays.

 Arguments:
 a0: Pointer to the genArray.
 a1: Pointer to the killArray.
 a2: Pointer to the liveInArray.
 a3: Pointer to the liveOutArray.
 a4: Function's live-out set.

 Returns:
 None.

markDeadCode
Performs dead code identification analysis by iterating backwards through each basic block's instructions.
For each instruction (starting from the block's last instruction), marks each instruction as 0 or 1 (alive or dead) and
returns 1 if dead code marked, 0 otherwise.

 Arguments:
 a0: Pointer to the instructionsArray.
 a1: Pointer to the liveOutArray.
 a2: Pointer to the deadCodeArray.

 Returns:
 a0: Dead code status (1 if dead code found, 0 otherwise).

fixTargets
Description:
 Adjusts branch and jump instruction targets based on the presence of dead code.

 Arguments:
 a0: Pointer to the instructionsArray.
 a1: Pointer to the deadCodeArray.

 Returns:
 None.

removeDeadCode
Description:
 Removes dead code from the input function by filling the refinedInstructionsArray with only the
 instructions marked as not dead in the deadCodeArray.

 Arguments:
 a0: Pointer to the instructionsArray.
 a1: Pointer to the deadCodeArray.
 a2: Pointer to the refinedInstructionsArray.

 Returns:
 None.

decodeInstruction
Description:
 Decodes a given instruction to determine its defined and used registers and returns them as bit vectors.

 Arguments:
 a0: An instruction word.

 Returns:
 a0: Bit vector of the defined register.
 a1: Bit vector of the used registers.

For this lab, only the following opcodes are relevant:
I-type (load): 0000011
I-type (arithmetic with immediate): 0010011
U-type (load upper immediate): 0110111
S-type (store): 0100011
SB-type (branch): 1100011
R-type (arithmetic): 0110011
Jump instructions are not considered to define or use any registers in this lab.

workList Functions
initliazeWorkList:
 Initializes the head and tail indices of the workList to zero.
 Sets up the workList to be empty and ready for new entries.

 Arguments:
 None.

 Returns:
 None.

addToWorkList:
 Adds an item to the workList. Returns an error if the list is
 full.

 Arguments:
 a0: Item to add to workList.

 Returns:
 a0: 0 on success, -1 (0xFF) if workList is full.

popFromWorkList:
 Pops an item from the workList.

 Arguments:
 None.

 Returns:
 a0: Item from workList or -1 (0xFF) if workList is
empty.

adjustBranchImm (optional
helper)

a0: A branch instruction.
a1: New immediate value.

 a0: Branch instruction with updated immediate.

Arguments:

Returns:

Takes a branch instruction (SB-type) and extracts the sign-extended
immediate

Description:

adjustJalImm (optional helper)

a0: A jal instruction.
 a1: New immediate value.

 a0: Jump instruction with updated immediate.

Arguments:

Returns:

Updates the immediate value of a jump instruction (jal) (UJ type).
Description:

Flow of Implementation
Recommended Program Flow

1. Call getControlFlowGraph to populate the CFG data structures.

2. Initialize the deadCodeArray with all instructions set as unmarked.

3. Perform the iterative analysis as follows:

• Call genKillSets to compute the generation and killing sets.

• Call getLiveSets to determine the live-in and live-out sets for each basic block.

• Call markDeadCode to identify and mark the dead code based on the live sets.

• If markDeadCode indicates that new dead code was found, return to step 3.

4. Once the loop exits (when no new dead code is found), call fixTargets to adjust any targets affected by the dead code
removal.

5. Finally, call removeDeadCode to eliminate the marked dead code from the program.

Testing

Lab #6: Dead Code Elimination

CFG_simulator tool
In the Code/test_case_validator folder you will find an executable called cfg_verifier.

To create a test case, write a RISC-V function (e.g., INPUT_FUNCTION.s) in an assembly file to begin with. Then, type in the
following command in the terminal: rars a dump .text Binary <INPUT_FUNCTION.bin> <INPUT_FUNCTION.s>.

The binary file generated by this command can serve as a program argument to the CFG_simulator tool included with this
lab. The cfg_verifier tool will parse the file and output another binary file (the cfg.bin) which can be used as an argument
to the deadCodeElimination.s file.

Run as ./cfg_verifier <INPUT_FUNCTION.bin>

Program Arguments
We have provided some test inputs and expected outputs in the Tests folder.

Two arguments required for deadCodeElimination.s: the full path to the binary file
cfg.bin (output from the cfg_verifier tool) and the final live-out array of the function.

Ensure there are no quotation marks or spaces in the path.

Tests Folder
There are three tests: basicblocks, nestedloop, singleinstruction.

- A .txt file containing the correct output for the test.

- A .bin (binary) file containing the assembled function (program
argument).

- A .s file containing the assembly code of the input
function.

Each test has the
following:

Unit Tests

The common.s file will run unit tests on the functions in
deadCodeElimination.s.

You can view the results in the “Run I/O” panel of RARS.

Check out the .data section in the common.s file to see how they are set up.

Tests are hardcoded and do not use the file set as the program argument.

Disassembler

Lab #6: Dead Code Elimination

What is a Disassembler?
RARS is a RISC-V Assembler that translates RISC-V instructions to executable binary.

For this lab, we will use an Open-Source RISC-V Disassembler (
https://github.com/michaeljclark/riscv-disassembler)

A Disassembler does the
opposite.

https://github.com/michaeljclark/riscv-disassembler

How to Use the Disassembler
There is a Disassembly folder in the Code folder.

There is a file called “print-instructions.c” in this folder that prints the equivalent
instructions for hexadecimal words.

First, compile “print-instructions.c” by running e.g. “gcc print-instructions.c”

Next, create a text file containing hexadecimal instructions. The file should look like this:

How to Use the Disassembler (cont.)
Once you have an executable for print-instructions.c (a.out) and a text file with
hexadecimal instructions (example.txt), execute “./a.out example.txt”

Here is the disassembled instructions from example.txt:

Notes on the Disassembler

The disassembler translates addi t0, t0, 0 to mv t0, zero. Keep this in mind to
avoid confusion with addi instructions.

The disassembler will not translate a sentinel value (0xFFFFFFFF) as expected.

What to Submit?

A single file, called controlFlowGraph.s.

Do not modify the line .include "common.s".

Do not modify the common.s file.

Do not modify the name of any function.

Push your repository to GitHub before the deadline.

Do not remove the CMPUT 229 Student Submission License.

Keep the file in the Code folder of the git repository.

Good Luck!

Lab #6: Dead Code Elimination

	Lab #6: Dead Code Elimination
	Slide 2
	Slide 3
	Slide 4
	Liveness Analysis
	Liveness Analysis (2)
	Block-Level Liveness Analysis
	Slide 8
	Instruction-Level Liveness Analysis
	Slide 10
	Data Structures
	Slide 12
	genArray
	killArray
	liveInArray
	liveOutArray
	deadCodeArray
	workList
	workList (2)
	inWorkListArray
	Function Signatures
	deadCodeElimination
	getGenKillSets
	getLiveSets
	markDeadCode
	fixTargets
	removeDeadCode
	decodeInstruction
	workList Functions
	Slide 30
	Slide 31
	Flow of Implementation
	Testing
	CFG_simulator tool
	Program Arguments
	Tests Folder
	Unit Tests
	Disassembler
	What is a Disassembler?
	How to Use the Disassembler
	How to Use the Disassembler (cont.)
	Notes on the Disassembler
	What to Submit?
	Good Luck!

