
Pipelining Simulator
CMPUT 229 LAB 6

Saumya Patel

GOAL

• Simulate the operation of a 5-stage pipelined RISC-V CPU in
software.

• Allow users to step through program execution one instruction at a
time.

• Visualize instruction flow through each pipeline stage:
• Instruction Fetch (IF)
• Instruction Decode/Register Fetch (ID)
• Execute/Address Calculation (EX)
• Memory Access (MEM)
• Write Back (WB)

GOAL (Continued)
• Enable observation of how instructions overlap in the pipeline during

parallel execution.
• Demonstrate how the pipeline handles different types of hazards:

• Data hazards: when one instruction depends on the result of another.
• Control hazards: typically caused by branch instructions.
• Structural hazards: due to insufficient hardware resources (described

but not simulated).
• Model cache behavior for memory instructions (loads and stores):

• Check for cache hits and misses.
• Introduce memory delays (stalls) on a cache miss to show impact on

pipeline execution.

• Collect and display performance metrics throughout
simulation.

• Allow analysis of the performance impact of hazards,
stalls, and cache behavior.

BACKGROUND
•Pipelining:
oTechnique used in computer architecture to

improve CPU performance
oAllows multiple instructions to be executed

simultaneously
oDivides processing into stages with each

performing specific operations
oOutput of one stage becomes input for the next

stage

Background (Continued)
• Five pipeline stages:
oIF (Instruction Fetch)

▪ Instruction is fetched from memory
oID (Instruction Decode/Register Fetch)

▪ Instruction is decoded and registers read
oEX (Execute/Address Calculation)

▪ Operation performed or effective address calculated
oMEM (Memory Access)

▪ Data memory accessed for load/store instructions
oWB (Write Back)

▪ Result written back to register file

Background (Continued)
• Pipeline hazards:
oData hazards

▪When instruction depends on result of previous
instruction not yet completed

oControl hazards
▪When pipeline makes decision based on unresolved

branch instruction
oStructural hazards

▪ When multiple instructions require same resource
simultaneously

Memory Mapped Register and Register Table

• Register Table (or register file) = array of 32 words.
• Each word represents a register.
• If the address of the Register table is 0x40004000 then the first

register ie x0 has the address 0x40004000, register x1 has the
value 0x40004004 , etc

• Register Table stored in the global variable RegisterTable

The Simulator

• The entire simulator requires using and calling the 5 stages of the
pipeline in a reverse order.

• Example
WriteBack();
Memory();
Execution();
Decode();
InstructionFetch();

• Simulate Control Hazards like
handling branches along with data
hazards.

• Modeling cache behaviors and
introducing cache delays for cache
misses.

Pipeline Latches - Overview

• Pipeline latches hold instruction information between
stages.

• Each latch stores:
• Instn (32 bit)
• Valid bit (shows if actual instruction is in latch)
• Instruction-specific fields required for the next pipeline

stage

IF/ID Latch

• Purpose: Holds instruction just fetched, ready
for decode.

• Holds:
• Fetched instruction (raw 32 bits)
• Program Counter (PC) of fetched

instruction
• Valid bit (1 if latch holds a real instruction,

0 otherwise)
• Note: Enables step-wise handoff of

instruction to decoding stage.

ID/EX Latch
• Purpose: Holds decoded information, ready for

execution.
• Holds:

• Instruction
• Instruction type (R, I, S, SB, UJ)
• Register indices: rs1, rs2, rd
• Immediate value (sign-extended, format-

dependent)
• funct3 field
• Funct7 field
• Control signals
• Program Counter (PC)
• Valid bit

EX/MEM Latch

• Purpose: Holds execution/ALU results and address
calculation for memory access.

• Holds:
• Result from ALU (arithmetic/logical result, or

effective memory address)
• Second source register (rs2)
• Register destination (rd)
• Branch evaluation (taken/not taken) (if

instruction is branch)
• Value to write to memory (for store instructions)
• Control signals
• Valid bit

MEM/WB Latch

• Purpose: Holds results of memory or ALU
operation for final write-back.

• Holds:
• Data from memory (for load)
• Data from ALU (if not a load)
• Destination register (rd)
• Control signals
• Valid bit
• InstructionType

Inserting into the pipeline
• A helper function called InsertIntoPipeline gives a detailed

overview.
• "CurrentPipeline" is used to store the current state of the pipeline

at any given cycle. It is an array of 5 words representing the 5
stages of the pipeline.

• When an instruction is inserted, all the other instructions shift to
the right and the last instruction (write back stage) gets retired
from the pipeline.

Pipeline Stages

Instruction Fetch

•Reads the program counter
•Gets the instructions at the program counter. Inserts

the instructions into the pipeline.
• Turns on valid bit for the IF/ID latch
• Increments Program Counter

Decode

•Extracts the instructions from the IF/ID latch
•Calculate all the operands needed for the ID/EX

latch
•Sets the control signals
• Transfers the values to the ID/EX latch

Execute Stage

• Extracts the values from the ID/EX latch.
• Calculates the values stored in each of the registers
• Implements the forwarding and/or load use hazard detection and

handles them
• Gets the outcome of a branch and changes the PC if the branch is

taken but keeps the PC the same when the branch is not taken.

Data Hazards and Forwarding

• In the case of a data hazard where the destination register of the
instruction in the memory stage is the same as one of the
source registers, forwarding will need to be applied.

• In the case of a load use dependency, involving a use of after a
load, the following things will happen in the simulator
o The value will be taken from the necessary latch and there will be a stall.

Branch Prediction

• A simple static branch predictor is required to be
implemented in this lab. All branches are predicted to be not
taken.

• If a branch is taken you increment the number of
mispredictions by 1.
• This would require converting the instructions in the

latches and the current pipeline into a NOOP signified by a
–2 in the pipeline

• If a branch is not taken you increment the number of
correct predictions by 1.

Memory Stage

• Extracts the instructions from the EX/MEM latch
• Gets the control signal and masks the control signals based on

whether a memory access is needed or not.
• There are instructions that don’t need to access memory, and that

can be checked by masking the ControlSignal byte for
specific control signals

Memory Stage (Continued)

• If memory access is needed, you might have to load from memory
or write to memory. Use the ControlSignal field of the EX/MEM
latch to determine if memory should be accessed.

• Write the necessary values to the MEM/WB latch

Modeling the Cache Behavior

• The pipeline also simulates cache delays caused by
memory accesses.
•Cache misses cause a 3 cycle delay.
• This lab requires implementing the

SimulateHitOrMiss which generates a
pseudorandom number using the LCG (Linear
congruential generator) algorithm, to determine if a
memory access results in a hit or miss.

Modeling the Cache Behaviour (Continued)

• The values of a , c , m , and the initial Xn (seed) is given in Common.s
• Xn+1 is written back into Xnwhich is a variable (mentioned

in"common.s")
• (Xn+1 < 10) ? (Cache miss) : (Cache hit)

Write Back Stage

• Extract values from the MEM/WB latch
• This stage involves writing values into the register file if

necessary.
• That can be done by masking out the ControlSignal field

of the MEM/WB latch and extracting the
necessary signals.

Output
• The output is divided into 3 parts
o The Pipeline Stages
o The Register Table
o Simulation summary

• The pipeline stages involve printing the current state of
the pipeline after every cycle

• The register table section visualizes the values of the
memory-mapped registers in the RegisterTable.

Output (Continued)

• The simulation summary contains
oTotal Cycles
oInstructions Executed
oCycles Per Instruction (CPI)
oNumber of Branches
oCache Hits and Misses
oBranch mispredictions and Correct Predictions
oInstructions that involve memory accesses

Functions to implement

• PipeliningSimulator
oMain function that calls the functions i.e the 5 stages, updates the cycle

count, handles the stalls, and is involved with printing the current state of
the pipeline, the register table and the end statistics.

• InstructionFetchStage
oPerforms the instruction fetch stage by fetching the instruction at the

current program counter, and performs the operations of the instruction
fetch stage, and setting the IF/ID latch

Functions to implement (Continued)

• DecodeStage
• Processes the instruction fetched in the previous stage. This stage is responsible

for determining the instruction type, Extracting operand
registers, immediates and funct3 codes, and also generating the correct control
signals for each type of instruction.

• ExecutionStage
oPerforms arithmetic, logical, and address calculations based on

instruction type. This stage is responsible for executing ALU operations for
R-type and I-type instructions, computing branch conditions, preparing
effective addresses for S-type and UJ-type instructions, propagating
results and control signals to the EX/MEM pipeline latch.

Functions to implement (Continued)

• MemoryStage
oHandles all memory access operations as determined by the control

signals. This stage is responsible for performing memory reads or writes
using the address computed in the EX stage, propagating relevant data
and control information to the MEM/WB latch

Functions to implement (Continued)

• WriteBackStage
oWrite-back stage: writes result to register file if RegWrite is set and valid.

Selects value from memory or ALU based on the control signal;

• PreDecode
o Takes in the instruction type and instruction hex as arguments and returns

indeces of rs1, rs2, rd, funct3, funct7, immediate

• SimulateHitOrMiss
oSimulates a cache hit or miss for a given register using a Linear

Congruential Generator (LCG). Updates global counters for cache hits
and misses, and increments cycles on a miss.

Data Structures And Global Variables
• Global variables are given to manage the state of the pipeline, print the

simulation stats, etc
• The data structures include the pipeline latches.
• The following global variables are given

• CurrentPipeline
• ZeroFlag
• Cycles
• CorrectBranchPredictions
• BranchMispredictions
• NumBranches
• PCWrite
• RegisterTable
• SimulatedMemory

• NumMemAccess
• NumCacheMisses
• NumCacheHits
• NumInstructions
• CacheMissFlag
• DelayCounter
• CacheMissFlag

Test Cases

• All test cases are standalone RISC-V assembly files (no assembler
directives or global variables).

• Common.s sets up a 256-byte SimulatedMemory (found in the
data structures section) and initializes a0 to point to it.

• Supported Instructions
oR-type: add, sub
o I-type: lw, addi
oS-type: sw
oSB-type: beq, bne

Test Cases (Continued)

• Execution Context
o Test cases run without inputs and only access SimulatedMemory for

load/store.

• Purpose
oValidate pipeline correctness with varied scenarios (array sums,

arithmetic, branching).

• Students are encouraged to design additional test cases beyond
those provided.

Tips and Tricks

• Read Chapter 4 : The Processor in the textbook!
• Use a Disassembler to decode the binary representation of the

instruction to debug the pipelining stages functions! You can find
one online (https://luplab.gitlab.io/rvcodecjs/)

https://luplab.gitlab.io/rvcodecjs/

	Slide 1: Pipelining Simulator
	Slide 2: GOAL
	Slide 3: GOAL (Continued)
	Slide 4
	Slide 5: BACKGROUND 
	Slide 6: Background (Continued)
	Slide 7: Background (Continued)
	Slide 8: Memory Mapped Register and Register Table
	Slide 9: The Simulator
	Slide 10: Pipeline Latches - Overview
	Slide 11: IF/ID Latch
	Slide 12: ID/EX Latch
	Slide 13: EX/MEM Latch
	Slide 14: MEM/WB Latch
	Slide 15: Inserting into the pipeline
	Slide 16
	Slide 17: Pipeline Stages
	Slide 18: Instruction Fetch
	Slide 19: Decode
	Slide 20: Execute Stage
	Slide 21: Data Hazards and Forwarding
	Slide 22: Branch Prediction
	Slide 23: Memory Stage
	Slide 24: Memory Stage (Continued)
	Slide 25: Modeling the Cache Behavior
	Slide 26: Modeling the Cache Behaviour (Continued)
	Slide 27: Write Back Stage
	Slide 28: Output
	Slide 29: Output (Continued)
	Slide 30: Functions to implement
	Slide 31: Functions to implement (Continued)
	Slide 32: Functions to implement (Continued)
	Slide 33: Functions to implement (Continued)
	Slide 34: Data Structures And Global Variables
	Slide 35: Test Cases
	Slide 36: Test Cases (Continued)
	Slide 37: Tips and Tricks

