Pipelining Simulator

CMPUT 229 LAB 6

Saumya Patel

GOAL

* Simulate the operation of a 5-stage pipelined RISC-V CPU in
software.

* Allow users to step through program execution one instruction at a
time.

* Visualize instruction flow through each pipeline stage:
* Instruction Fetch (IF) |
* Instruction Decode/Register Fetch (ID) =
* Execute/Address Calculation (EX)
* Memory Access (MEM) -
* Write Back (WB) |

K
]

GOAL (Continued)

* Enable observation of how instructions overlap in the pipeline during
parallel execution.

* Demonstrate how the pipeline handles different types of hazards:
 Data hazards: when one instruction depends on the result of another.
 Control hazards: typically caused by branch instructions.
 Structural hazards: due to insufficient hardware resources (described

but not simulated).

* Model cache behavior for memory instructions (loads and stores):

* Check for cache hits and misses.

* Introduce memory delays (stalls) on a cache miss to show impact on
pipeline execution.

* Collect and display performance metrics throughout
simulation.

* Allow analysis of the performance impact of hazards,
stalls, and cache behavior.

BACKGROUND

* Pipelining:
olechnique used in computer architecture to
iImprove CPU performance

oAllows multiple instructions to be executed
simultaneously

oDivides processing into stages with each
performing specific operations

oOutput of one stage becomes input for the next
stage

Background (Continued)

* Five pipeline stages:
olF (Instruction Fetch)
= |nstruction is fetched from memory
olD (Instruction Decode/Register Fetch)
" |nstruction is decoded and registers read

oEX (Execute/Address Calculation)
= Operation performed or effective address calculated

oMEM (Memory Access)
= Data memory accessed for load/store instructions

oWB (Write Back)
= Result written back to register file

Background (Continued)

* Pipeline hazards:

oData hazards

" When instruction depends on result of previous
Instruction not yet completed

oControl hazards

" When pipeline makes decision based on unresolved
branch instruction

oStructural hazards

= When multiple instructions require same resource
simultaneously

Memory Mapped Register and Register Table

* Register Table (or register file) = array of 32 words.

* Each word represents a register.

* if the address of the Register table is 0x40004000 then the first
register ie X0 has the address 0x40004000, register x1 has the

value 0x40004004 , etc
* Register Table stored in the global variable RegisterTable

The Simulator

* The entire simulator requires using and calling the 5 stages of the
pipeline in a reverse order.

* Example * Simulate Control Hazards like
WriteBack(); handling branches along with data
Memory(); hazards.

Execution();

* Modeling cache behaviors and

Decode(); introducing cache delays for cache
InstructionFetch(); misses.

Pipeline Latches - Overview

* Pipeline latches hold instruction information between
stages.
* Each latch stores:
* Instn (32 bit)
* Valid bit (shows if actual instruction is in latch)

* Instruction-specific fields required for the next pipeline
stage

struct ifidlatch |
IF/ID Latch unsigned instn;

int pe;

byte valid;

* Purpose: Holds instruction just fetched, ready
for decode.

* Holds:
* Fetched instruction (raw 32 bits)

* Program Counter (PC) of fetched
instruction

e Valid bit (1 if latch holds a real instruction, : Yo
0 otherwise) — e

IIu,etruaiun
2

* Note: Enables step-wise handoff of
instruction to decoding stage.

struct ID_EK_LHTCH {
unsigned 1instn;

ID/EX Latch int instn type

1nt pc;

int rd;
* Purpose: Holds decoded information, ready for int rsl;
execution. 4o rs?;
* Holds: int 1mm;

* Instruction ?nt functl;
* Instruction type (R, I, S, SB, U)) 1nt funct?;
: ST byte valid;
* Registerindices: rsl, rs2, rd s ontrol signal
y T control signals;
* Immediate value (sign-extended, format- : - ’
dependent)

* funct3 field

* Funct? field

* Control signals

* Program Counter (PC)
* Valid bit

struct EX MEM LATCH |

EX/MEM Latch unsigned instn;

1nt 1nstn type;
* Purpose: Holds execution/ALU results and address 1nt rd;
calculation for memory access. int 1‘52;
* Holds: int alu result;

* Result from ALU (arithmetic/logical result, or
effective memory address)

» Second source register (rs2) byte control signals;
Register destination (rd)

Branch evaluation (taken/not taken) (if
instruction is branch)

Value to write to memory (for store instructions)
Control signals
* Valid bit

byte valid;

struct memwblatch {
1nt rd;

MEM/WB Latch it alo outy
1nt mem out;
e Purpose: Holds results of memory or ALU [RskjE: valid;
operation for final write-back. unsigned 1nstn;
e Holds: byte control signals;

1nt instn_type;

* Data from memory (for load) .
e Data from ALU (if not a load) '
* Destination register (rd)

* Control signals

 Valid bit

* InstructionType

Inserting into the pipeline

* A helper function called InsertintoPipeline gives a detailed
overview.

* "CurrentPipeline" is used to store the current state of the pipeline
at any given cycle. It is an array of 5 words representing the 5
stages of the pipeline.

* When an instruction is inserted, all the other instructions shift to
the right and the last instruction (write back stage) gets retired
from the pipeline.

Iw s11, 0(s2)

bne t3, t4, label

bne t3, t4, label

addi s1, s2, 10

sw s1, 0(s0)

Current Pipeline

Pipeline Stages

Instruction Fetch

* Reads the program counter

* Gets the instructions at the program counter. Inserts
the instructions into the pipeline.

* Turns on valid bit for the IF/ID latch
* Increments Program Counter

Decode

e Extracts the instructions from the |F/ID latch

* Calculate all the operands needed for the ID/EX
latch

* Sets the control sighals
* Transfers the values to the ID/EX latch

Execute Stage

* Extracts the values from the ID/EX latch.
* Calculates the values stored in each of the registers

* Implements the forwarding and/or load use hazard detection and
handles them

* Gets the outcome of a branch and changes the PC if the branch is
taken but keeps the PC the same when the branch is not taken.

Data Hazards and Forwarding

* In the case of a data hazard where the destination register of the

Instruction in the memory stage is the same as one of the
source registers, forwarding will need to be applied.

In the case of a load use dependency, involving a use of after a
load, the following things will happen in the simulator

o The value will be taken from the necessary latch and there will be a stall.

Forwarding to Avoid Data Hazard

— . & e @

Time (clock cycles)

3N

+4

and r6,xr1l,x7

gy Q 2

or r8,xr1,xr9

fetrcl D
xor r1l0,r1,x11 . .H H .2 w a

Branch Prediction

* A simple static branch predictor is required to be
Implemented in this lab. All branches are predicted to be not
taken.

 |f a branch is taken you increment the number of
mispredictions by 1.
* This would require converting the instructions in the
latches and the current pipeline into a NOOP signified by a
-2 in the pipeline
* |f a branch is not taken you increment the number of
correct predictions by 1.

Memory Stage

e Extracts the instructions from the EX/MEM latch

* Gets the control signal and masks the control sighals based on
whether a memory access is needed or not.

* There are instructions that don’t need to access memory, and that
can be checked by masking the ControlSignal byte for
specific control signals

Memory Stage (Continued)

* If memory access is needed, you might have to load from memory
or write to memory. Use the ControlSignal field of the EX/MEM
latch to determine if memory should be accessed.

* Write the necessary values to the MEM/WB latch

Modeling the Cache Behavior

* The pipeline also simulates cache delays caused by
memory accesses.

* Cache misses cause a 3 cycle delay.

* This lab requires implementing the
SimulateHitOrMiss which generates a
pseudorandom number using the LCG (Linear
congruential generator) algorithm, to determine if a
memory access results in a hit or miss.

Modeling the Cache Behaviour (Continued)

* Thevaluesofa,c,m, andtheinitial X, (seed) is givenin Common.s

* X,.q IS Written back into X_which is a variable (mentioned
in"common.s")

* (X.,.1<10) ?(Cache miss) : (Cache hit)
LCG: Linear Congruential Generator

X1 = (a-X,, +c) mod m

: Current value (the seed is the initial Xj)

: Multiplier constant

: Increment constant

: Modulus constant

: Next value to compute

Write Back Stage

 Extract values from the MEM/WB latch

* This stage involves writing values into the register file if
necessary.

* That can be done by masking out the ControlSignal field
of the MEM/WB latch and extracting the
necessary signals.

Output

* The output is divided into 3 parts
o The Pipeline Stages
o The Register Table
o Simulation summary

* The pipeline stages involve printing the current state of
the pipeline after every cycle

* The register table section visualizes the values of the
memory-mapped registers in the RegisterTable.

Output (Continued)

* The simulation summary contains
oTotal Cycles
olnstructions Executed
oCycles Per Instruction (CPI)
oNumber of Branches
oCache Hits and Misses
oBranch mispredictions and Correct Predictions
olnstructions that involve memory accesses

Functions to implement

* PipeliningSimulator

o Main function that calls the functions i.e the 5 stages, updates the cycle
count, handles the stalls, and is involved with printing the current state of
the pipeline, the register table and the end statistics.

* InstructionFetchStage

o Performs the instruction fetch stage by fetching the instruction at the
current program counter, and performs the operations of the instruction
fetch stage, and setting the |F/ID latch

Functions to implement (Continued)

* DecodeStage

* Processes the instruction fetched in the previous stage. This stage is responsible

for determining the instruction type, Extracting operand
registers, immediates and funct3 codes, and also generating the correct control

signals for each type of instruction.

* ExecutionStage

o Performs arithmetic, logical, and address calculations based on
instruction type. This stage is responsible for executing ALU operations for
R-type and I-type instructions, computing branch conditions, preparing
effective addresses for S-type and UJ-type instructions, propagating
results and control signals to the EX/MEM pipeline latch.

Functions to implement (Continued)

* MemoryStage

o Handles all memory access operations as determined by the control
signals. This stage is responsible for performing memory reads or writes
using the address computed in the EX stage, propagating relevant data
and control information to the MEM/WB latch

Functions to implement (Continued)

* WriteBackStage

o Write-back stage: writes result to register file if RegWrite is set and valid.
Selects value from memory or ALU based on the control signal;

* PreDecode

o Takes in the instruction type and instruction hex as arguments and returns
indeces of rs1, rs2, rd, funct3, funct/7, immediate

e SimulateHitOrMiss

o Simulates a cache hit or miss for a given register using a Linear
Congruential Generator (LCG). Updates global counters for cache hits

and misses, and increments cycles on a miss.

Data Structures And Global Variables

* Global variables are given to manage the state of the pipeline, print the
simulation stats, etc

* The data structures include the pipeline latches.
* The following global variables are given

* CurrentPipeline e NumMemAccess
* ZeroFlag « NumCacheMisses
* Cycles NumCacheHits
e CorrectBranchPredictions .

. L e Numlinstructions
* BranchMispredictions . CacheMissFl
 NumBranches achelMissFlag
. PCWrite * DelayCounter
° RegisterTable d CaCheMiSSFlag

SimulatedMemory

Test Cases

* All test cases are standalone RISC-V assembly files (no assembler
directives or global variables).

* Common.s sets up a 256-byte SimulatedMemory (found in the
data structures section) and initializes a0 to point to it.

* Supported Instructions add a2 , a@ , zero
addl t@, zero, @ #sum = @
O R—type: add, sub addi t2, zero, -1 #sentinel -1
o |-type: lw, addi . 8(m2] dget val
oS—type: SW addi a2, a2, 4 #move ptr
. add , th, t3 #add to sum
OSB'type- beq: bne 1 , t2, loop #if not -1 -+ keep going

, B(ae) ¥store result

Test Cases (Continued)

e Execution Context

o Test cases run without inputs and only access SimulatedMemory for
load/store.

* Purpose
o Validate pipeline correctness with varied scenarios (array sums,
arithmetic, branching).

* Students are encouraged to design additional test cases beyond
those provided.

Tips and Tricks

* Read Chapter 4: The Processor in the textbook!

* Use a Disassembler to decode the binary representation of the
Instruction to debug the pipelining stages functions! You can find
one online (https://luplab.gitlab.io/rvcodecjs/)

https://luplab.gitlab.io/rvcodecjs/

	Slide 1: Pipelining Simulator
	Slide 2: GOAL
	Slide 3: GOAL (Continued)
	Slide 4
	Slide 5: BACKGROUND 
	Slide 6: Background (Continued)
	Slide 7: Background (Continued)
	Slide 8: Memory Mapped Register and Register Table
	Slide 9: The Simulator
	Slide 10: Pipeline Latches - Overview
	Slide 11: IF/ID Latch
	Slide 12: ID/EX Latch
	Slide 13: EX/MEM Latch
	Slide 14: MEM/WB Latch
	Slide 15: Inserting into the pipeline
	Slide 16
	Slide 17: Pipeline Stages
	Slide 18: Instruction Fetch
	Slide 19: Decode
	Slide 20: Execute Stage
	Slide 21: Data Hazards and Forwarding
	Slide 22: Branch Prediction
	Slide 23: Memory Stage
	Slide 24: Memory Stage (Continued)
	Slide 25: Modeling the Cache Behavior
	Slide 26: Modeling the Cache Behaviour (Continued)
	Slide 27: Write Back Stage
	Slide 28: Output
	Slide 29: Output (Continued)
	Slide 30: Functions to implement
	Slide 31: Functions to implement (Continued)
	Slide 32: Functions to implement (Continued)
	Slide 33: Functions to implement (Continued)
	Slide 34: Data Structures And Global Variables
	Slide 35: Test Cases
	Slide 36: Test Cases (Continued)
	Slide 37: Tips and Tricks

