
Lab #6: Stack Manipulation

CMPUT 229

Background

CMPUT 229

Register Calling Conventions

Register-Saving and Register-Restoring Instructions

Factorial:
 li s0, 1
Loop:
 mul s0, a0, s0
 addi a0, a0, -1
 beqz a0, End
 j Loop
End:
 mv a0, s0
 jalr x0, ra, 0

Factorial:
 addi sp, sp, -4
 sw s0, 0(sp)
 li s0, 1
Loop:
 mul s0, a0, s0
 addi a0, a0, -1
 beqz a0, End
 j Loop
End:
 mv a0, s0
 lw s0, 0(sp)
 addi sp, sp, 4
 jalr x0, ra, 0

The register calling conventions specifies which registers a callee function needs to save if the value in the
register is modified.

Factorial stores to s0, a0, x0.
According to our calling convention, the callee
only needs to save s0.

In this lab, these are
called register-saving
instructions

In this lab, these are
called register-restoring
instructions

RISC-V Instructions as Hexadecimal

Factorial:
0x01000 li s0, 1
 Loop:
0x01004 mul s0, a0, s0
0x01008 addi a0, a0, -1
0x0100C beqz a0, End
0x01010 j Loop
 End:
0x01014 mv a0, s0
0x01018 jalr x0, ra, 0

Factorial:
0x01000 0x00100413
0x01004 0x02850433
0x01008 0xFFF50513
0x0100C 0x00050463
0x01010 0xFF5FF06F
0x01014 0x00800533
0x01018 0x00008067

Refer to the RISC-V Green Sheet and try to translate the instructions on the left to hexadecimal to
confirm .

When writing RISC-V code it can be helpful to use pseudo instructions that are not actually specified on
your RISC-V green sheet, but are supported by RARS.

Factorial:
 li s0, 1
Loop:
 mul s0, a0, s0
 addi a0, a0, -1
 beqz a0, End
 j Loop
End:
 mv a0, s0
 jalr x0, ra, 0

The li s0, 1 pseudo instruction translates to addi s0, x0, 1

Labels don’t exist in the binary of your code. RARS uses labels like Factorial, Loop and End to simplify assembly coding.
So the beqz a0, End pseudo instruction translates to beq a0, x0, 4.

Also, j Loop translates to jal x0, -8

mv a0, s0 translates to add a0, x0, s0

A Note on Pseudo Instructions

Input to the Lab

The input for this lab is a sequence of RISC-V instructions ending with a sentinel value (0xFFFFFFFF)

Here’s what the factorial function as input would look like:

[0x00100413, 0x02850433, 0xFFF50513, 0x00050463, 0xFF5FF06F,
0x00800533, 0x00008067, 0xFFFFFFFF]

Factorial:
0x01000 0x00100413
0x01004 0x02850433
0x01008 0xFFF50513
0x0100C 0x00050463
0x01010 0xFF5FF06F
0x01014 0x00800533
0x01018 0x00008067

This lab will provide the address of the first instruction as input. In this example, the input to
stackManipulation would be 0x01000 (a pointer to 0x00100413, the first instruction in factorial).

The instructions are stored in an array in memory, ending with the sentinel value (0xFFFFFFFF).

A solution to this lab will parse through the instructions.

Understanding what Hexadecimal Instructions do

Understanding the hexadecimal representation of instructions can seem intimidating. Luckily, RISC-V’s
simplistic architecture makes this process more manageable.

RISC-V Instruction Formats are distinguished by their opcode.
funct3 distinguishes the instructions within that instruction format.

For example, let’s try disassembling the first instruction (0x00100413) from the factorial function.
0x00100413 = 0000 0000 0001 0000 0000 0100 0001 0011
opcode = 001 0011, funct3 = 000

From the opcode, this is an I-type instruction. From the funct3, this is an addi instruction.

Determining Which Instructions Write to Registers

A solution to this lab must parse through the input function and determine which registers it writes to.

RISC-V simplifies this problem through the core instruction formats.

The following instruction types all
have a rd: R, I, U, UJ.

If an instruction is of any of the
above types, then it writes to
register rd.

The remaining instruction types do not write: S, SB.

S instructions include sb, sh, sw, sd.
SB instructions include beq, bne, blt, bge, bltu, bgeu.

Register Bitmaps

A register bitmap is 32 bits where each bit represents a register. This maps bits to register numbers.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

In this example, all bits except bit 27 are 0. In hexadecimal, this is represented as 0x0800 0000

Using a Bitmap to Represent Register Calling Conventions

0

0

1

0

0

000

1

1

00

000000

1111111111

0000

= 0000 1111 1111 1100 0000 0011 0000 0100

= 0x0FFC 0304

So, the register bit map representing the default RISC-V calling conventions is
0x0FFC 0304

Assignment

CMPUT 229

stackManipulation

a0: address of the first element of an array of RISC-V instructions ending with a
sentinel value (0xFFFFFFFF)

a0: address of the first element of a stack manipulated variation of the
array of RISC-V instructions ending with a sentinel value (0xFFFFFFFF).

Parameter:

Return Value:

a1: register calling conventions for the RISC-V function

This is the main function called from common.s.
Convert a RISC-V function into its stack-manipulated variation.

Description:

findWrites

a0: address of the first element of an array of RISC-V instructions ending with a
sentinel value (0xFFFFFFFF)

a0: bit map of the registers written to in the RISC-V function

Parameter:

Return Value:

Find all the register writes in a RISC-V function.

Description:

findWrites Example:
Factorial:
 li s0, 1
Loop:
 mul s0, a0, s0
 addi a0, a0, -1
 beqz a0, End
 j Loop
End:
 mv a0, s0
 jalr x0, ra, 0

store to x8

store to x8

store to x10

doesn’t store

store to x0

store to x10

store to x0

j Loop is a pseudo instruction for jal x0, -12

bit 8 is already set

bit 10 is already set

bit 0 is already set

Register Bit Map
0000 0000 0000 0000 0000 0 0 0000 00000 01 11

=0x0000 0501

With the factorial function as input, findWrites should return 0x00000501 in a0.

storeStackInstructions

a0: Boolean value. If 0, store register-saving instructions. If 1, store register-
restoring instructions

None.

Parameter:

Return Value:

Inserts the register-saving or register-restoring to a specified memory location.
Store the sentinel value (0xFFFFFFFF) at the end of the register-
saving/restoring instructions.

Description:

a1: address of the location to store register-saving/restoring instructions.

a2: bit map indicating which registers to save to the stack.

storeStackInstructions
Register-Saving Example:

Factorial:
 li s0, 1
Loop:
 mul s0, a0, s0
 addi a0, a0, -1
 beqz a0, End
 j Loop
End:
 mv a0, s0
 jalr x0, ra, 0

Let’s continue using the factorial function

a0: 0 (we’re storing the register-saving instructions)
a1: where we want to store instructions
a2: 0x0000 0100

From findWrites, we know that factorial stores to 0x0000 0501 and
our default register conventions are 0x0FFC 0304.
ANDing these together we get 0x0000 0100

So, the only register that writes and we need to save is x8 (s0).

registerSavingInstructions:
addi sp, sp, -4
sw s0, 0(sp)

[0xFFC10113, 0x00812023 , 0xFFFFFFFF]

Remember to store the sentinel value (0xFFFFFFFF) at the end of
the instructions

Inputs to storeStackInstructions:

storeStackInstructions
Register-Restoring Example

Factorial:
 li s0, 1
Loop:
 mul s0, a0, s0
 addi a0, a0, -1
 beqz a0, End
 j Loop
End:
 mv a0, s0
 jalr x0, ra, 0

Let’s continue using the factorial function

a0: 1 (we’re storing the register-restoring instructions)
a1: where we want to store instructions
a2: 0x0000 0100

registerRestoringInstructions:
lw s0, 0(sp)
addi sp, sp, 4

[0x00012403, 0x00410113 , 0xFFFFFFFF]

Remember to store the sentinel value (0xFFFFFFFF) at the end of
the instructions

Inputs to storeStackInstructions:

Is that all?
Using the functions findWrites and storeStackInstructions, a naïve solution to the problem of
missing register saving/restoring instructions could be implemented.

However, a solution to this lab will go further and consider the consequences of inserting
instructions into already assembled code.

In this lab, we’ll focus on how inserted instructions affect jumps and accesses to the data
section.

How Inserted Instructions Affect Jumps
Inserting instructions into the binary of a function could change the behaviour of the function.
Let’s see how our factorial example is affected by inserted instructions:

Factorial:
0x01000 li s0, 1
 Loop:
0x01004 mul s0, a0, s0
0x01008 addi a0, a0, -1
0x0100C beqz a0, End (beqz a0, 4)
0x01010 j Loop (jal x0, -12)
 End:
0x01014 mv a0, s0
0x01018 jalr x0, ra, 0

0x01000 addi sp, sp, -4
0x01004 sw s0, 0(sp)
0x01008 li s0, 1
0x0100C mul s0, a0, s0
0x01010 addi a0, a0, -1
0x01014 beqz a0, 4
0x01018 jal x0, -12
0x0101C mv a0, s0
0x01020 lw s0, 0(sp)
0x01024 addi sp, sp, 4
0x01028 jalr x0, ra, 0

Notice how the address of the instructions in memory has changed. Our j Loop (pseudo instruction for jal x0, -12) has
changed from 0x01010 to 0x01018.

Luckily, jal instructions in RISC-V are relative to the current program counter. So, since the Loop instruction we want to
execute is still located 12 bytes behind the j Loop instruction, the function is still correct.

How Inserted Instructions Affect Jumps cont.
In the last slide, we found that jumps within the function body still operate the same even with our
inserted instructions.

Let’s consider a variation of Factorial that calls another function to print the answer.

Factorial_Print:
0x01000 li s0, 1
 Loop:
0x01004 mul s0, a0, s0
0x01008 addi a0, a0, -1
0x0100C beqz a0, End
0x01010 j Loop
 End:
0x01014 mv a0, s0
0x01018 jal Print_Int (jal ra, 8)
0x0101C jalr x0, ra, 0

Print_Int:
0x01020 li a7, 1
0x01024 ecall
0x01028 jalr x0, ra, 0

0x01000 addi sp, sp, -4
0x01004 sw s0, 0(sp)
0x01008 li s0, 1
0x0100C mul s0, a0, s0
0x01010 addi a0, a0, -1
0x01014 beqz a0, 4
0x01018 jal x0, -12
0x0101C mv a0, s0
0x01020 jal ra, 8
0x01024 lw s0, 0(sp)
0x01028 addi sp, sp, 4
0x0102C jalr x0, ra, 0
0x01030 li a7, 1
0x01034 ecall
0x01038 jalr x0, ra, 0

The jump within the function
still behaves the same.

The jump outside the function
DOES NOT behave the same.

Since the stack-restoring instructions were inserted at the end of the function, the jal offset is incorrect.

Fixing Jumps Outside of the Function Body
With inserted instructions, jumps within the function behave the same. However, jumps outside of the function
(calls to other functions) need to be corrected.

0x01000 addi sp, sp, -4
0x01004 sw s0, 0(sp)
0x01008 li s0, 1
0x0100C mul s0, a0, s0
0x01010 addi a0, a0, -1
0x01014 beqz a0, 4
0x01018 jal x0, -12
0x0101C mv a0, s0
0x01020
0x01024 lw s0, 0(sp)
0x01028 addi sp, sp, 4
0x0102C jalr x0, ra, 0
0x01030 li a7, 1
0x01034 ecall
0x01038 jalr x0, ra, 0

To fix this forward jump outside the function body, we need to
account for the inserted instructions.

Since we inserted 8 bytes at the end of the function, add 8 bytes
to the jal immediate.

jal ra, 8 → jal ra, 16

jal ra, 16jal ra, 8

Now the function behaves the same even with our compiler pass!!

If this jump was backwards, subtract the number of bytes inserted at the start of the function from the jal
immediate.

How Inserted Instructions Affect Data Accesses
Now that the solution has accounted for calls to other functions, let’s also consider accesses to the data section.

Let’s consider a function called Increment that increments a counter in memory:

Increment:
 la s0, counter # s0 <- pointer to counter
 lw t0, 0(s0) # t0 <- counter
 addi t0, t0, 1 # increment counter
 sw t0, 0(s0) # store incremented counter
 jalr x0, ra, 0 # return

Increment:
0x0040000 auipc s0, 0x0fc10
0x0040004 addi s0, s0, 0
0x0040008 lw t0, 0(s0)
0x004000C addi t0, t0, 1
0x0040010 sw t0, 0(s0)
0x0040014 jalr x0, ra, 0

la s0, counter is a pseudo instruction

RARS translates this to the following instructions:
 auipc s0, 0x?????
 addi s0, s0, 0x???

auipc (add upper immediate to program counter) will do the
following:
 s0 <- PC + 0x0fc10000
Then addi will adjust the bottom 3 bytes of s0
 s0 <- s0 + 0x00000000

To simplify things, just remember that RARS uses auipc and addi to ensure that accesses to the data section are
relative to the PC and any location in the instructions can access any location in the data section.

How Inserted Instructions Affect Data Accesses cont.
The load address instruction is relative to the program counter (because of the auipc instruction).
Since the compiler pass inserts register-saving instructions, the load address will occur from a different PC.

Increment:
0x00400000 addi sp, sp, -4
0x00400004 sw s0, 0(sp)
0x00400008 auipc s0, 0x0fc10
0x0040000C addi s0, s0, 0
0x00400010 lw t0, 0(s0)
0x00400014 addi t0, t0, 1
0x00400018 sw t0, 0(s0)
0x0040001C lw s0, 0(sp)
0x00400020 addi sp, sp, 4
0x00400024 jalr x0, ra, 0

Counter:
 0x10010000 1
OtherData:
 0x10010004 2
 0x10010008 3

s0 <- PC + 0x0fc10000

s0 = 0x1001 0008

Since the inserted instructions affect the PC and
the accesses to the data section are relative to the
PC, the access to counter is incorrect.

= 0x00400008 + 0x0FC10000

Increment:
0x0040000 auipc s0, 0x0fc10
0x0040004 addi s0, s0, 0
0x0040008 lw t0, 0(s0)
0x004000C addi t0, t0, 1
0x0040010 sw t0, 0(s0)
0x0040014 jalr x0, ra, 0

Fixing Data Accesses
From the last slide, load address instructions will behave incorrectly after inserting the stack instructions. Let’s
consider the same example to try to fix the load addresses.

Increment:
0x00400000 addi sp, sp, -4
0x00400004 sw s0, 0(sp)
0x00400008 auipc s0, 0x0fc10
0x0040000C
0x00400010 lw t0, 0(s0)
0x00400014 addi t0, t0, 1
0x00400018 sw t0, 0(s0)
0x0040001C lw s0, 0(sp)
0x00400020 addi sp, sp, 4
0x00400024 jalr x0, ra, 0

Counter:
0x10010000 1

s0 <- 0x1001 0008

The inserted stack instructions changed the PC when auipc is executed.
To correct this, subtract the change in the PC.

In this case, the 2 register-restoring instructions changed the PC by 8
bytes.
Let’s subtract 8 bytes from the addi immediate to correct this.

addi s0, s0, 0 -> addi s0, s0, -8

addi s0, s0, 0addi s0, s0, -8

s0 <- 0x1001 0000

The load address is fixed!!!

fixAccesses

a0: address of the first element of an array of RISC-V instructions ending with a
sentinel value (0xFFFFFFFF)

None.

Parameter:

Return Value:

Correct the accesses in a RISC-V function that may have bytes inserted at
the start and end.
Adjust the immediates in jal and la instructions.

Description:

a1: number of bytes inserted at the start of the function.

a2: number of bytes inserted at the end of the function.

Almost There…

Lastly, consider the case that a function has multiple return statements. Where should
the register-restoring instructions be inserted?

They could be inserted before every return statement.

But, this would lead to unnecessary insertions and could complicate calculating the jump
immediates from the last function.

Creating an Exit Node
Create an exit node that starts on the first register-restoring instruction (lw x0-31, 0(sp))

A solution should change every return instruction (even if there’s just one) to jump to
the exit node.

redirectReturns

a0: address of the first element of an array of RISC-V instructions ending with a
sentinel value (0xFFFFFFFF).

None.

Parameter:

Return Value:

Converts all return statements in the function to jump to an exit node.

Description:

a1: pointer to exit node.

Program Flow for stackManipulation
1. Call findWrites to get the register bitmap of registers written to in the function.

2. Call fixAccesses to correct any jal or la instructions. By calling fixAccesses this early, it is
simpler to determine whether a jal instruction jumps outside the function body.

3. Call storeStackInstructions to insert the register-saving instructions.

4. Copy the body of the function to space where the outputted instruction sequence will live.

5. Call storeStackInstructions to insert the register-restoring instructions. Remember to keep a
pointer to the first instruction in the register-restoring instructions as this will be the start of the exit
node.

6. Call redirectReturns to redirect all return statements to the exit node.

7. Insert the return statement at the end of the exit node, followed by the sentinel value (0xFFFFFFFF).

Testing

CMPUT 229

Program Arguments

We have provided some test inputs and outputs for you to confirm that your
lab is working.

There are two program arguments for stackmanipulation.s. The first is a path
to the .binary file, the second is the register saving conventions. For example,
Tests/la.binary 1234FFFF

Unit Tests

The common.s file will run unit tests on the functions in stackmanipulation.s.

1: findWrites -- [X] Great job!
2: storeStackInstructions -- [] Almost there!
3: fixAccesses -- [X] Great job!
4: redirectReturns -- [X] Great job!
5: stackManipulation -- [] Almost there!

The unit tests are hardcoded in the common.s file. The unit tests do not use
the program arguments file at all. To see the input and expected output,
check the common file.

Tests Folder

In the Tests Folder, there are 4 test functions: add, la, isPos, factorial.

Each test has the following:
1. A .s file containing the assembly for the function
2. A .binary file for the function. This is what should be used in the program

arguments. It was created using (rars “test.s” a dump .text Binary
“test.binary”).

3. A .correct file. This file contains the correct output for the test and some
comments on particular parts of the code.

Creating Tests

You are encouraged to create your own tests to confirm that your lab is
working.

To create your own test do the following:
1. Write the function you want to test in assembly (say my_test.s)
2. Create the binary file for your function.
 - Execute the command rars my_test.s a dump .text Binary my_test.binary

3. Now you can execute stackmanipulation.s with a register convention of
your choice. program arguments = my_test.binary FFFF1234.

Creating Complex Tests

If you want to test only one function from a file with many functions, you
need to specify to the common file which function you want to test.

Use the dummy statement “addi x0, x0, 229” immediately before the start of
the function you want to test and immediately after the end of the function.

… # functions not included in test

addi x0, x0, 229 # THIS TELLS THE COMMON.S FILE THAT THE
FUNCTION STARTS ON THE NEXT LINE.

factorial:
…
ret

addi x0, x0, 229 # THIS TELLS THE COMMON.S FILE THAT THE
FUNCTION ENDED ON THE PREVIOUS LINE.

… # more functions down here

Only factorial will be inputted
to stackManipulation

Here is an excerpt from
Tests/factorial.s which uses a
complex test

Disassembler

CMPUT 229

What is a Disassembler?

RARS is a RISC-V Assembler that translates RISC-V Instructions to executable
binary.

A Disassembler is the opposite. It converts binary to RISC-V instructions.

For this lab, we will use an Open-Source RISC-V Disassembler from:
https://github.com/michaeljclark/riscv-disassembler

https://github.com/michaeljclark/riscv-disassembler

How to Use the Disassembler

In the Code folder of the lab, we have created a disassembly folder.

In the disassembly folder, we have created a file called “print-instructions.c”
that uses functions from the disassembler.

First, compiler “print-instructions.c” using a C compiler. For example, execute
the command “gcc print-instructions.c” or “clang print-instructions.c”.

Next, create a text file containing hexadecimal instructions. The file should
look like this: 0x00100413

0x02850433
0xFFF50513
0x00050463
0xFF5FF06F
0x00800533
0x00008067

How to Use the Disassembler cont.

Once you have an executable for print-instructions.c (a.out) and a text file
with hexadecimal instructions (example.txt), execute “./a.out example.txt”

Here is the disassembled instructions from example.txt. This is a factorial
function.

Issues/Confusions with the Disassembler

While testing, we have noticed some issues with the disassembler:
• Firstly, the disassembler gets auipc immediates incorrect. Since a solution

should not change auipc immediates, we recommend ignoring them in the
disassembler output.

• Secondly, the disassembler translates “addi t0, t0, 0” to “mv t0, t0”. Be
aware of this to avoid any confusion when working with addi instructions.

• Lastly, The disassembler will not translate the sentinel value. This is as
expected.

What to Submit?

A single file, called stackmanipulation.s.

Make sure the file does not contain a main procedure.

	Slide 1: Lab #6: Stack Manipulation
	Slide 2: Background
	Slide 3: Register Calling Conventions
	Slide 4: Register-Saving and Register-Restoring Instructions
	Slide 5: RISC-V Instructions as Hexadecimal
	Slide 6
	Slide 7: Input to the Lab
	Slide 8: Understanding what Hexadecimal Instructions do
	Slide 9: Determining Which Instructions Write to Registers
	Slide 10: Register Bitmaps
	Slide 11: Using a Bitmap to Represent Register Calling Conventions
	Slide 12: Assignment
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30: Program Flow for stackManipulation
	Slide 31: Testing
	Slide 32: Program Arguments
	Slide 33: Unit Tests
	Slide 34: Tests Folder
	Slide 35: Creating Tests
	Slide 36: Creating Complex Tests
	Slide 37: Disassembler
	Slide 38: What is a Disassembler?
	Slide 39: How to Use the Disassembler
	Slide 40: How to Use the Disassembler cont.
	Slide 41: Issues/Confusions with the Disassembler
	Slide 42: What to Submit?

