
Lab RISC-V to WASM
CMPUT 229

Your task in this lab

• To generate the function body of a
WASM module from a RISC-V function.

• You are provided with some
components of the WASM module so
that the WASM code that you generate
can run in a browser.

What is a WASM module?

WASM Module

• A file containing a webassembly program
• The smallest valid WASM module contains 8 bytecodes:

0x00, 0x61, 0x73, 0x6d, 0x01, 0x00, 0x00, 0x00

• WAST is a text representation:

(module)
This module does not contain any code!

WASM Module Sections
• Sections have headers and headers have fields.

• All sections are optional
• At least a few sections and fields in each header

should be included to do something interesting.

• The lab provides you with:
• a type section,
• a function (declaration) section,
• an export section, and
• the preamble for the code section.

Main Idea -RISCVtoWASM

• Parse the binary representation of a RISC-V program discovering branches:
• Compute each branch target
• Increment either the backward or the forward branch of the target

• Parse the binary representation of a RISC-V program again:
• Detect if the instruction is an I-type, R-type, or forward/backward

branch instruction and then build a set of corresponding WASM
instructions

• Place the WASM instructions into the provided output space
• Branch translation is special and different for forward and backward

branches

S-Expression
func

param

i32

param

i32

result

f64

(func (param i32) (param i32) (result f64) ...)

The lab provides a template S-expressions that you can use to generate
bytecode.

Translating RISC-V to WAST
(Webassembly text representation)

add x10, x11, 1

(set_local 0
(i32.add

(get_local 1)
(i32.const 1)

)
)

add x10, x11, x12

(set_local 0
(i32.add

(get_local 1)
(get_local 2)

)
)

add x10 x11 x0

(set_local 0
(i32.add

(get_local 1)
(i32.const 0)

)
)

When encountering the zero
register you must change it to a
constant of zero

…
beq x10 x11 label
add x11 x21 x20
add x10 x11 x12

label:
add x10 x11 x12
…

(block
(i32.eq (get_local 0) (get_local 1))
br_if 0
(⟨instructions in A⟩)

end)
(⟨instructions in B⟩)

A

B

…
label:

add x11 x21 x20
add x10 x11 x12
beq x10 x11 label
add x10 x11 x12
…

(loop
(⟨instructions in A⟩)
(i32.eq (get_local 0) (get_local 1))
br_if 0

end)

A

S-expression to Bytecode
• When determining the bytecode ordering in the module one cannot simply

transcribe components of the S-expression representation:

• Incorrect translation:

(set_local x0 (i32.const 1)) -> 22 ;set_local
00 ;variable index
41 ;i32.const
01 ;literal value

• WASM module uses postfix notation.
• operators follow the operands in an expression.

• Examples of WAST on the web are often shown in prefix notation.

Bytecode ordering

• Correct translation:

(set_local x0 (i32.const 1)) -> 41 ;i32.const
01 ;literal value
22 ;set_local
00 ;variable index

• Bytecode for the x0 the constant (i32.const 1) operands appear before the
set_local operator.

S-expression to Bytecode

Control Flow

• WASM enforces structured control flow in a program. In RISC-V
however it is possible to have unstructured control flow.

• Translation a RISC-V unstructured program results in either invalid or
nonsense WASM code

• All testcases must be structured code.

Unstructured Example

• Multiple exits/entry points out of a loop is unstructured control flow
Loop:

addi xt0 xt0 -1
beq xt0 xt7 breakLoop
bne xt0 xt1 Loop

breakLoop:
…

Unstructured Example
• Branching to the instruction immediately after another branch creates

unstructured code

bne xt0 xt1 Label1
addi xt0 xt0 -1
beq xt7 xt8 Label2

Label1:
andi xt0 xt0 -1
addi xt0 xt0 -1

Label2:
…

bne xt0 xt1 Label1

addi xt0 xt0 -1

beq xt7 xt8 Label2

Label1:

andi xt0 xt0 -1

addi xt0 xt0 -1

Label2:

…

Split points

Join points

Critical edges

Structured Example
• The control flow of the program can be modeled with

fully nested blocks with no target specified within
another construct’s block.

outerLoop:
addi xt0 xt0 -1
beq xt0 xt2 skipAdd
addi xt0 xt0 10

skipAdd:
addi xt0 xt0 1
bne xt0 xt1 outerLoop

outerLoop:

addi xt0 xt0 -1

beq xt0 xt2 skipAdd

addi xt0 xt0 10

skipAdd:

addi xt0 xt0 1

bne xt0 xt1 outerLoop

LEB128 encoding

• LEB128 encoding compresses a binary representation to use as few
bytes as possible

• The number of bytes needed to represent a certain value depends on
the value

• For example: 1 can be represented in 1 byte, but 128 needs 2 bytes

LEB128 Example
What is the into LEB128 format for 321345?

321345 = 1001110011101000001 (19 bits)

Sign extend to a multiple of 7 bits

321345 = 001001110011101000001 (now 21 bits)

0010011 1001110 1000001

Set the highest bit on each byte to 1, except for most significant.

00010011 11001110 11000001
0x13 0xce 0xc1

Break into groups of 7 bits

The Assignment (RISCVtoWASM input)

a0

Memory

a0 contains a memory
address

At that address is the binary
representation of the first

instruction

This is the sentinel
indicating the end

of the program.

a1

Memory

a1 contains a memory
address

At that address you should begin to store
the binary representation of the program

The return opcode is the sentinel indicating the end
of the program to the provided WASMDisassembler.

You should still include the very last end opcode
however.

0x0b
0x0f
0x00
0x20

The Assignment (RISCVtoWASM input)

; end
; return
; 0 (a0)
; get_local

RISC-V WASM

…

s1 (x9) 26

a0(x10) 0

a1(x11) 1

…

a0 – number of bytes that have been generated to represent the
generated WASM program.

RISCVtoWASM Effect:
The address provided to you in a1 will point to the space that
should now contain your generated WASM code.

The Assignment (RISCVtoWASM input)

Testing

• Test Cases
• One test case is provided, under the link in the assignment specification
• The browserTool directory also contains sample RISC-V functions as well as

their respective .bin files to be used as input to your program and the .wasm
files that are the translated result.

• Student-Generated Test Cases
• Students will submit test cases

• Printing the Output of your solution
• RISCV code provided for printing

Tips – Overall:
• Test as you go, there is a disassembler provided so that you

may analyze intermediate output. The only requirement to run
the disassembler is that your code is terminated with a return
statement.

• You may also use the hexdump command to view your
program’s binary file (.wasm file) output

• Test your encodeLEB128 function extensively. You may use the
decodeLEBtoDec function in the WASMDisassembler.s file to
convert your encodeLEB128 output back to decimal format in
order to make testing less complex. See the decodeLEBtoDec
function comments in the WASMDisassembler.s file for details.

• Start early, this assignment has several nontrivial parts.

University of Alberta
Code of Student Behavior

http://www.governance.ualberta.ca/en/CodesofConductandResidenceCommunityStandards/CodeofStudentBehaviour.aspx

30.3.2(1) Plagiarism
No Student shall submit the words, ideas, images or data of another person as the
Student’s own in any academic writing, essay, thesis, project, assignment,
presentation or poster in a course or program of study.

30.3.2(2) Cheating
30.3.2(2) d No Student shall submit in any course or program of study, without the
written approval of the course Instructor, all or a substantial portion of any
academic writing, essay, thesis, research report, project, assignment,
presentation or poster for which credit has previously been obtained by the
Student or which has been or is being submitted by the Student in another
course or program of study in the University or elsewhere

