Introduction to Lab #3: Lab_CubeStats_Old

José Nelson Amaral
CMPUT 229
University of Alberta

Requirements

- Follow all subroutine calling conventions
- Must use \$fp to access anything that is stored in the stack
 - Only can use \$sp in this assignment to change the size of the stack.

CubeStats

- Receives the following parameters:
 - corner: the address of the first element of a cube in an *n*-dimensional array.
 - edge: the size of the edge of the cube.
 - dimensions: the number of dimensions of the cube (and base array).
 - size: the size of the base array
 - Assume that the size of the base array is the same in all dimensions, i.e. the base array is itself a cube

CubeStats (cont.)

- \$v0: a signed integer representing the floor of the average of all negative elements in the specified cube.
- \$v1: a signed integer representing the floor of the average of all negative elements in the specified cube.

Computing the Floor of the Average

• For instance, for the negative numbers:

$$\$v1 = \frac{1}{k} \sum_{i=0, c_i < 0}^{k} c_i$$

where c_i is an element of the Cube, and k is the number of elements in the Cube.

CubeStats (cont.)

- Assume that the parameters are correct:
 - Parameters are positive
 - The Cube is contained within the base array

What is the address of element -1 (i=2)?

$$A + i \times 4$$

 7	3	-1	1	4	-5	15	
↑ A			A[i]				

Address	Value
0x10001024	
0x10001020	
0x1000101C	
0x10001018	15
0x10001014	-5
0x10001010	4
0x1000100C	1
0x10001008	-1
0x10001004	3
0x10001000	7
0x10000FFC	

One-dimensional matrix A.

What is the address of element w (i=1, j=2)?

$$B + (i \times 3 + j) \times 4$$

B[i][j]

Address	Value
0x10001024	
0x10001020	Z
0x1000101C	У
0x10001018	Х
0x10001014	W
0x10001010	V
0x1000100C	u
0x10001008	t
0x10001004	S
0x10001000	r
0x10000FFC	

Two-dimensional 3×3 matrix B.

Which elements belong to a Cube at position (1,1) with an edge = 2?

B[i][j]

Two-dimensional 3×3 matrix B.

Address	Value
0x10001024	
0x10001020	Z
0x1000101C	У
0x10001018	Х
0x10001014	W
0x10001010	V
0x1000100C	u
0x10001008	t
0x10001004	S
0x10001000	r
0x10000FFC	

Which elements belong to a Cube at position (1,1) with an edge = 2?

B[i][j]

Two-dimensional 3×3 matrix B.

Address	Value
0x10001024	
0x10001020	Z
0x1000101C	у
0x10001018	Х
0x10001014	W
0x10001010	V
0x1000100C	u
0x10001008	t
0x10001004	S
0x10001000	r
0x10000FFC	

What is the address of element h (i=1, j=1, k=1)?

$$C + (((i \times 2) + j) \times 2 + k) \times 4$$

$$C + (i \times 2 \times 2 + j \times 2 + k) \times 4$$

Address	Value
0x10001024	
0x10001020	
0x1000101C	h
0x10001018	g
0x10001014	f
0x10001010	е
0x1000100C	d
0x10001008	С
0x10001004	b
0x10001000	a
0x10000FFC	

Organization of C in memory in row-major style.

Three-dimensional 2×2×2 matrix C.

main program

- reads a k-dimensional Cube from a file
- places the values in the memory in row-major format
- for each specification of a cube in the file:
 - initializes four global variables:
 - totalNeg, totalPos, countNeg and countPos
 - calls your CubeStats subroutine
 - prints the value returned by CubeStats

File format

Cube a position (1,0,1) with edge 1

main

 Reading and understanding the main routine is part of the assignment.

Test Generator

- A test generator, written in Python, is provided to you as a convenience.
 - Have fun modifying/playing with it.
- Caution:
 - Large test cases overflow the arena provided
 - Increasing the arena is ok but will eventually run into the static space limit of SPIM.

What to hand in

 A single file named CubeStats.s containing your subroutine CubeStats written in MIPS assembly.